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1. Abstract 
 
This seminar paper we study and present a Coarse-Grain parallel formulation of a 
multilevel k-way graph partitioning algorithm. The multilevel k-way partitioning algorithm 
reduces the size of the graph by successively collapsing vertices and edges (coarsening 
phase), finds a k-way partitioning of the smaller graph, and then it constructs a k-way 
partitioning for the original graph by projecting and refining the partition to successively 
finer graphs (uncoarsening phase). 
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2. Introduction 
 
Graph partitioning is an important problem that has extensive applications in many areas, 
including scientific computing, VLSI design, geographical information systems, operation 
research, task scheduling and transportation system. The problem is to partition the vertices 
of a graph in p roughly equal partitions, such that the number of edges connecting vertices 
in different partitions is minimized. 
 
A parallel graph partitioning algorithm can take advantage of the significantly higher 
amount of memory available in parallel computers. In many applications, the graph is 
already distributed among processors, but needs to be repartitioned due to the dynamic 
nature of the underlying computation. 
 
Parallel formulation of the multilevel k-way partitioning scheme is even harder, as the 
refinement of the k-way partitioning appears to require global interactions. 
 
A key feature of this parallel formulation is that it is able to achieve high degree of 
concurrency while maintaining the high quality of the partitions produced by the serial 
multilevel partitioning algorithm. Parallel formulation of the coarsening phase is generally 
applicable to any multilevel graph partitioning algorithm that does coarsening of the graph, 
and the parallel formulation of the k-way partitioning refinement algorithm can also be used 
in conjunction with any other parallel graph partitioning algorithm that requires refinement 
of a k-way partitioning. 
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3. Multilevel k-way  Graph Partitioning 
 
The k-way graph partitioning problem is defined as follows: Given a graph G = (V , E) with 
|V| = n, partition V into k subsets, V1, V2, ……, Vk such that Vi ∩ Vj = Ø ; for i ≠ j , |Vi| = 

n/k, and ∪i Vi= V, and the number of edges of E whose incident vertices belong to different 
subsets is minimized. A k-way partitioning of V is commonly represented by a partitioning 
vector P of length n, such that for every vertex v ∈ V , P[v] is an integer between 1 and k, 
indicating the partition to which vertex v belongs. Given a partitioning P, the number of 
edges whose incident vertices belong to different partitions is called the edge-cut of the 
partitioning. 
 
The basic structure of a multilevel k-way partitioning algorithm is very simple. The graph 
G = (V , E) is first coarsened down to a small number of vertices, a k-way partitioning of 
this much smaller graph is computed and then this partitioning is projected back towards 
the original graph (finer graph), by successively refining the partitioning at each 
intermediate level. 
 
Consider a weighted graph G0 = (V0 , E0 ), with weights both on vertices and edges. A 
multilevel k-way partitioning algorithm works as follows: 
 
Coarsening Phase The graph G0 is transformed into a sequence of smaller graphs G1, G2, 

………, Gm such that |V0| > |V1| > |V2| > ….. >|Vm|. 
 
Partitioning Phase A k-way partitioning Pm of the graph Gm = (Vm , Em ) is computed that 
partitions Vm into k partitions, each containing roughly |V0|/k vertices of G0. 
 
Uncoarsening Phase The partitioning Pm of Gm is projected back to G0 by going through 
intermediate partitioning Pm-1, Pm-2, ……, P1, P0. 
 
This three stages coarsening, initial partitioning, and refinement is graphically illustrated in 
Figure 1. 
 
Next we describe each of these phases in more detail. 
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3.1.  Coarsening Phase 
 
During the coarsening phase, a sequence of smaller graphs Gi = (Vi , Ei ), is constructed 
from the original graph G0 = (V0 , E0 ) such that |Vi| > |Vi+1|. Graph Gi+1 is constructed from 
Gi by finding a maximal matching Mi ⊆ Ei of Gi and collapsing together the vertices that 
are incident on each edge of the matching. In this process no more than two vertices are 
collapsed together because a matching of a graph is a set of edges, no two of which are 
incident on the same vertex. Vertices that are not incident on any edge of the matching are 
simply copied over to Gi+1. 

When vertices v, u ∈ Vi are collapsed to form vertex w ∈ Vi+1, the weight of vertex w is set 
equal to the sum of the weights of vertices v and u, and the edges incident on w is set equal 
to the union of the edges incident on v and u minus the edge (v, u). For each pair of edges 
(x, v) and (x, u) (i.e., x is adjacent to both v and u) a single edge (x, w) is created whose 
weight is set equal to the sum of the weights of these two edges. Thus, during successive 
coarsening levels, the weight of both vertices and edges increases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The various phases of the multilevel k-way partitioning algorithm. During the 
coarsening phase, the size of the graph is successively decreased; during the initial 
partitioning phase, a k-way partitioning of the smaller graph is computed (a 6-way 
partitioning in this example); and during the uncoarsening phase, the partitioning is 
successively refined as it is projected to the larger graphs. 
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The process of coarsening is illustrated in Figure 2. Each vertex and edge in Figure 2(a) has 
a unit weight. Figure 2(b) shows the coarsened graph that results from the contraction of 
shaded vertices in Figure 2(a). Numbers on the vertices and edges in Figure 2(b) show their 
resulting weights. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Process of coarsening 
 
 
Maximal matchings can be computed in different ways. The method used to compute the 
matching greatly affects both the quality of the partition, and the time required during the 
uncoarsening phase. The heavy-edge matching (HEM) matching scheme is follwed here.It 
computes a matching Mi , such that the weight of the edges in Mi is high. The heavy-edge 
matching is computed using a randomized algorithm as follows. The vertices are visited in 
a random order. However, instead of randomly matching a vertex with one of its adjacent 
unmatched vertices, HEM matches it with the unmatched vertex that is connected with the 
heavier edge. As a result, the HEM scheme quickly reduces the sum of the weights of the 
edges in the coarser. The coarsening phase ends when the coarsest graph Gm has a small 
number of vertices. 
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3.2. Partitioning Phase 
 
The second phase of a multilevel k-way partition algorithm is to compute a k-way partition 
of the coarse graph Gm = (Vm , Em ) such that each partition contains roughly |V0| / k vertex 
weight of the original graph. Since during coarsening, the weights of the vertices and edges 
of the coarser graph were set to reflect the weights of the vertices and edges of the finer 
graph, Gm contains sufficient information to intelligently enforce the balanced partition and 
the minimum edge-cut requirements. The k-way partition of Gm is computed using 
multilevel recursive bisection algorithm. 
 
 

3.3. Uncoarsening Phase 
 
During the uncoarsening phase, the partitioning of the coarser graph Gm is projected back to 
the original graph by going through the graphs Gm-1, Gm-2, ………..., G1. Since each vertex 
u ∈ Vi+1 contains a distinct subset U of vertices of Vi, the projection of the partition from 
Gi+1 to Gi is constructed by simply assigning the vertices in U to the same partition in Gi 
that vertex u belongs in Gi+1. 
 
Even though the partition of Gi+1 is at a local minima, the projected partition of Gi may not. 
Since Gi is finer, it has more degrees of freedom that can be used to improve the partition 
and thus decrease the edge-cut. The basic purpose of a partition refinement algorithm is to 
select vertices such that when moved from one partition to another the resulting partition 
has smaller edge-cut and remains balanced (i.e., each partition has the same weight). 
The multilevel k-way partitioning algorithm is based on a simplified version of the 
Kernighan-Lin algorithm, extended to provide k-way partition refinement. This algorithm is 
called greedy refinement (GR). Its complexity is largely independent of the number of 
partitions being refined. The GR algorithm consists of a number of iterations, and in each 
iteration all the vertices are checked in a random order to see if they can be moved. Let v be 
such a vertex. If v is a boundary vertex (i.e., it is connected with a vertex that belongs to an 
other partition), then v is moved to the partition that leads to the largest reduction in the 
edge-cut, subject to partition weight constraints. These weight constraints ensure that all 
partitions have roughly the same weight. If the movement of v cannot achieve any 
reduction in the edge-cut, it is then moved to the partition (if any) that improves the 
partition-weight balance but leads to no increase in the edge-cut. The GR algorithm 
converges after a small number of iterations (within four to eight iterations). If the GR 
algorithm is not able to enforce the partition balance constraints, an explicit balancing 
phase is used that moves vertices between partitions even if this movement leads to an 
increase in the edge-cut. 
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4. Parallel Multilevel k-way Graph Partitioning 
 
The key feature of parallel formulation is that it is able to achieve high degree of 
concurrency while maintaining the high quality of the partitions produced by the serial 
multilevel partitioning algorithm. Parallel formulation of the coarsening phase is generally 
applicable to any multilevel graph partitioning algorithm that does coarsening of the graph, 
and the parallel formulation of the k-way partitioning refinement algorithm can also be used 
in conjunction with any other parallel graph partitioning algorithm that requires refinement 
of a k-way partitioning.  
 
 

4.1. Need for Parallel Graph Partitioning 
 
Even though the multilevel partitioning algorithms produce high quality partitions in a very 
small amount of time, the ability to perform partitioning in parallel is important for many 
reasons. The amount of memory on serial computers is not enough to allow the partitioning 
of graphs corresponding to large problems that can now be solved on massively parallel 
computers and workstation clusters. By performing graph partitioning in parallel, the 
algorithm can take advantage of the significantly higher amount of memory available in 
parallel computers.  
 
  

4.2. Parallel Formulation 
 
Developing a highly parallel formulation for the multilevel k-way partitioning algorithm is 
particularly difficult because both the task of computing a maximal matching during the 
coarsening phase, and the task of refining the partition during the uncoarsening phase 
appear to be quite serial in nature. 
 
Out of the three phases of the multilevel k-way partitioning algorithm, the coarsening and 
the uncoarsening phases require the bulk of the computation (over 95%). Hence, it is 
critical for any efficient parallel formulation of the multilevel k-way partitioning algorithm 
to successfully parallelize these two phases. Recall that during the coarsening phase, a 
matching of the edges is computed, and it is used to contract the graph. One possible way 
of computing the matching in parallel is to have each processor only compute matching 
between the vertices that it stores locally, and use these local matching to contract the 
graph. Since each pair of matched vertices resides on the same processor, this approach 
requires no communication during the contraction step. This approach works well as long 
as each processor stores relatively well connected portions of the entire graph. In particular, 
if the graph was distributed among the processors in a partitioned fashioned, then this 
approach would have worked extremely well. This is not a realistic assumption in most 
cases, since finding a good partition of the graph is the problem we are trying to solve by 
the multilevel k-way partitioner. Nevertheless, this approach of local matching can work 
reasonably well when the number of processors used is small relative to the size of the 
graph and the average degree of the graph is relatively high. The reason is that even a 
random partition of a graph among a small number of processors can leave many connected 
components at each processor. An alternate approach is to allow vertices belonging to 
different processors to be matched together. Compared to local matching schemes, this type 



 10

of matching provides matching of better quality, and its ability to contract the graph does 
not depend on the number of processors, or the existence of a good pre-partition. However, 
this global matching significantly complicates the parallel formulation because it requires a 
distributed matching algorithm. For example, if vertices v and u are located in two different 
processors P1 and P2, then on P1 vertex v might be matched to u, while on P2 vertex u may 
be matched to a different vertex w. Furthermore, another processor P3 may match its vertex 
z to vertex u as well. Any correct and usable distributed matching algorithm must resolve 
both of these conflicts efficiently. Note that since pairs of vertices that are contracted 
together can reside on different processors, a global communication is required when the 
contracted graph is constructed. 
 
During the uncoarsening phase, the k-way partition is iteratively refined as it is projected to 
successively finer graphs. The serial algorithm scans the vertices and moves any vertices 
that lead to a reduction in the edge-cut. Any parallel formulation of this algorithm will need 
to move a group of vertices at a time in order to speedup the refinement process. This group 
of vertices needs to be carefully selected so that every vertex in the group contributes to the 
reduction in the edge-cut. For example, it is possible that processor Pi decides to move a set 
of vertices Si  to processor Pj to reduce the edge-cut because the vertices in Si are connected 
to a set of vertices T that are located on processor Pj . But, in order for the edge-cut to 
improve by moving the vertices in Si, the vertices in T must not move. However, while Pi 
selects Si , processor Pj may decide to move some or all the vertices in T to some other 
processor. Consequently, when both sets of vertices are moved by Pi and Pj, the edge-cut 
may not improve; and it may even get worse. Clearly, the group selection algorithm must 
eliminate this type of unnecessary vertex movements.  
 
The developed highly parallel formulations for all three phases of the multilevel k-way 
graph partitioning algorithm is described on the following. This formulation utilizes graph 
coloring to eliminate conflicts in the computation of global matching in the coarsening 
phase and to eliminate unnecessary vertex movement in the parallel variation of the 
Kernighan-Lin refinement in the uncoarsening phases.  
 
Let p be the number of processors used to compute a p-way partition of the graph G = 
(V,E). G is initially distributed among the processors using a one-dimensional distribution, 
so that each processor receives n/p vertices and their adjacency lists. At the end of the 
algorithm, a partition number is assigned to each vertex of the graph.  
 

4.3. Computing a Coloring of a Graph 
 
A coloring of a graph G = (V, E) assigns colors to the vertices of G so that adjacent vertices 
have different color. So it requires to find a coloring such that the number of distinct colors 
used is small. This parallel graph coloring algorithm consists of a number of iterations. In 
each iteration, a maximal independent set of vertices I is selected using a variation of 
Luby’s algorithm. All vertices in this independent set are assigned the same color. Before 
the next iteration begins, the vertices in I are removed from the graph, and this smaller 
graph becomes the input graph for the next iteration. A maximal independent set I of a set 
of vertices S is computed in an incremental fashion using this algorithm. A random number 
is assigned to each vertex, and if a vertex has a random number that is smaller than all of 
the random numbers of the adjacent vertices, it is then included in I. Now this process is 
repeated for the vertices in S that are neither in I nor adjacent to vertices in I, and I is 
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augmented similarly. This incremental augmentation of I ends when no more vertices can 
be inserted in I. 
 
Luby’s algorithm can be implemented quite efficiently on a shared memory parallel 
computer, since for each vertex v, a processor can easily determine if the random value 
assigned to v is the smaller among all the random values assigned to the adjacent vertices. 
However, on a distributed memory parallel computer, for each vertex, random values 
associated with adjacent vertices that are not stored on the same processor needs to be 
explicitly communicated. In this implementation of Luby’s algorithm, prior to performing 
the coloring in parallel, a communication setup phase is performed, in which appropriate 
data structures are created to facilitate this exchange of random numbers. In particular, it is 
predetermined which vertices are located on a processor boundary (i.e., a vertex connected 
with vertices residing on different processors), and which are internal vertices (i.e., vertices 
that are connected only to vertices on the same processors). These data structures are used 
in all the phases of this parallel multilevel graph partitioning algorithm. 
 
 

4.4. Coarsening Phase 
 
During the coarsening phase a sequence G1, G2, ……, Gm of successively smaller graphs is 
constructed. Graph Gi+1 is derived from Gi by finding a maximal matching Mi of Gi and 
then collapsing the vertices incident on the edges of Mi . A matching algorithm that is based 
on the coloring of the graph is used to coarse the graph. This coloring algorithm also 
happens to be essential for parallelizing the partitioning refinement phase.  
 
This parallel matching algorithm is based on an extension of the serial algorithm and 
utilizes graph coloring to structure the sequence of computations. Consider the graph Gi = 
(Vi, Ei) that has been colored using this parallel formulation of Luby’s algorithm, and let 
Match be a variable associated with each vertex of the graph, that is initially set to -1. At 
the end of the computation, the variable Match for each vertex v stores the vertex that v is 
matched to. If  v is not matched, then Match = v.  
 
4.4.1. Coarsening on a shared memory architecture 
 
The matching Mi is constructed in an iterative fashion. During the cth iteration, vertices of 
color c that have not been matched yet (i.e., Match = -1) select one of their unmatched 
neighbors using the heavy-edge heuristic, and modify the Match variable of the selected 
vertex by setting it to their vertex number. Let v be a vertex of color c and (v, u) be the edge 
that is selected by v. Since the color of u is not c, this vertex will not be selecting a partner 
vertex at this iteration. However, there is a possibility that another vertex w of color c may 
select  (w, u). Since both vertices v and w perform their selections at the same time, there is 
no way of preventing that. This is handled as follows. After all vertices of color c select an 
unmatched neighbour, they synchronize. The vertices of color c that have just selected a 
neighbour, read the Match variable of their selected vertex. If the value read is equal to 
their vertex number, then their matching was successful, and they set their Match variable 
equal to the selected vertex; otherwise the matching fails, and the vertex remains 
unmatched. Note that if more than one vertex (e.g., v and w) want to match with the same 
vertex (e.g., u), only one of the writes in the Match variable of the selected vertex will 
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succeed; and this determines which matching survives. However, by using coloring, it is 
restricted which vertices select partner vertices during each iteration; thus, the number of 
such conflicts is significantly reduced. Also note that even though a vertex of color c may 
fail to have its matching accepted due to conflicts, this vertex can still be matched during a 
subsequent iteration corresponding to a different color. 
 

  
4.4.2. Coarsening on a distributed memory architecture 
 
The above algorithm is implemented quite easily on a distributed memory parallel 
computer as follows. The writes into the Match variables are gathered all together and are 
sent to the corresponding processors in a single message. If a processor receives multiple 
write requests for the same vertex, the one that corresponds to the heavier edge is selected. 
Any ties are broken arbitrarily. Similarly, the reads from the Match variables are gathered 
by the processors that store the corresponding variables and they are sent in a single 
message to the requesting processors. Furthermore, during this read operation, the 
processors who own the Match variables also determine if they will be the ones storing the 
collapsed vertex in Gi+1.  
After a matching Mi is computed, each processor knows how many vertices (and the 
associated adjacency lists) it needs to send and how many it needs to receive. Each 
processor then sends and receives these sub-graphs, and it forms the next level coarser 
graph by merging the adjacency lists of the matched vertices.  
 
 

4.5. Partitioning Phase 
 
During the partitioning phase, a p-way partition of the graph is computed using a recursive 
bisection algorithm. In this algorithm this phase is parallelized by using a parallel algorithm 
that parallelizes the recursive nature of the algorithm. This is done as follows: The various 
pieces of the coarse graph are gathered to all the processors using an all-to-all broadcast 
operation. At this point the processors perform recursive bisection using an algorithm that 
is based on nested dissection and greedy partition refinement. However, as illustrated in the 
following figure, each processor explores only a single path of the recursive bisection tree. 
At the end each processor stores the vertices that correspond to its partition of the p-way 
partition. Note that after the initial all-to-all broadcast operation, the algorithm proceeds 
without any further communication. 
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4.6. Uncoarsening Phase 
 
In the uncoarsening phase, the partition is projected from the coarse graph to the next level 
finer graph, and it is refined using the greedy refinement algorithm. Recall that during a 
single phase of the refinement algorithm the vertices are randomly traversed, and the 
vertices that lead to a decrease in the edge cut switch partitions. After each such vertex 
movement, the external degrees of the adjacent vertices are updated to reflect the new 
partition.  
 
In the parallel formulation of greedy refinement, the spirit of the serial algorithm is 
retained, but the order in which the vertices are traversed to determine if they can be moved 
to different partitions is changed. In particular, the single phase of the refinement algorithm 
is broken up into c sub-phases, where c is the number of colors of the graph to be refined. 
During the ith phase, all the vertices of color i are considered for movement, and the subset 
of these vertices that lead to a reduction in the edge-cut (or improve the balance without 
increasing the edge-cut) are moved. Since, the vertices with the same color form an 
independent set, the total reduction in the edge-cut achieved by moving all vertices at the 
same time is equal to the sum of the edge-cut reductions achieved by moving these vertices 

Processor 0 

Processor 1 

Processor 2 

Processor 3 

Figure 3: Performing the initial k-way partitioning in parallel. Each processor explores
only a single path from the root to the leaves in the recursive bisection tree. 
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one after the other. After performing this group movement, the external degrees of the 
vertices adjacent to this group are updated, and the next color is considered.  
 
During the parallel refinement, the vertices can be moved physically as they change 
partitions. That is, each processor initially stores all the vertices of a single part, and as 
vertices move between partitions during refinement, they can also move between the 
corresponding processors. However, in the context of multilevel graph partitioning such an 
approach requires significant communication. This is because for each vertex v in the 
coarse graph Gi that will be moved it needs to send not only the adjacency list of v but also 
the adjacency lists of all the vertices collapsed in v for the higher level finer graphs Gi-1,Gi-2 
….. , G0.  
  
In this parallel refinement algorithm this problem is solved as follows. Vertices do not 
move from processor to processor, but only the partition number associated with each 
vertex changes. Since the vertices are initially distributed in a random order, each processor 
stores vertices that belong to almost all p partitions. This ensures that during refinement 
each processor will have some boundary vertices that needs to be moved, leading to a 
generally load balanced computation. Furthermore, this also leads to a simpler 
implementation of the parallel refinement algorithm, since vertices (and their adjacency 
lists) do not have to be moved around. Of course, all the vertices are moved to their proper 
location at the end of the partitioning algorithm, using a single all-to-all personalized 
communication . 
 
The balance conditions are maintained as follows. Initially, each processor knows the 
weights of all p partitions. During each refinement sub-phase, each processor enforces 
balance constraints based on these partition weights. For every vertex it decides to move, it 
locally updates these weights. At the end of each sub-phase, the global partition weights are 
recomputed, so that each processor knows the exact weights.  
 

4.7. Communication Pattern of the Algorithm 
 
The parallel formulation of the multilevel k-way partitioning algorithm  is made of five 
different parallel algorithms, namely coloring, matching, contraction, initial partitioning, 
and refinement. Out of these five algorithms, three of them (coloring, matching, and 
refinement) have similar communication requirements. The amount of communication 
performed by each one of these three algorithms depends on the number of interface 
vertices. For example, during coloring, each processor needs to know the random numbers 
of the vertices adjacent to the locally stored vertices. Similarly, during refinement, every 
time a vertex is moved, the adjacent vertices need to be notified to update their partitioning 
information. Initially, each processor stores n/p vertices and nd/p edges, where d is the 
average degree of the graph. Thus, the number of interface vertices is at most O(n/p). Since 
the vertices are initially distributed randomly, these interface vertices are equally 
distributed among the p processors. Hence, each processor needs to exchange data with 
O(n/p2) vertices of each processor. Alternatively, each processor needs to send information 
for about O(n/p2) locally stored vertices to each other processor. This can be accomplished 
by using the all-to-all personalized communication operation. As the size of the coarser 
graphs successively decreases, the amount of data that needs to be exchanged also 
decreases. However, each processor still needs to send and receive data from almost all 
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other processors. If ts is the message startup overhead, then each of these all-to-all 
personalized communication operations requires pts time just due to startup overhead. 
 
The number of all-to-all personalized operations performed for each coarse graph Gi 
depends on the number of colors c of Gi . In particular, it performs c operations during 
coloring (one for each color that it computes), 2c during matching (two for each color), and 
4c during refinement (it performs two passes of the refinement algorithm, each consisting 
of c sub-phases and it needs to communicate twice during each sub-phase). Thus, for each 
graph Gi, it performs 7c all-to-all personalized operations. 
 
Consider now a graph with a million vertices, that is partitioned on 128 processors, and that 
the coarsest graph consists of about one thousand vertices. This level of contraction can be 
achieved by going through about ten coarsening levels. Also, assume that the average 
number of colors of each coarse graph is around ten. Given these parameters, the parallel 
multilevel k-way partitioning algorithm will perform a total of 700 all-to-all personalized 
communication operations. On 128 processors, these operations will incur a total of 89600ts 
overhead due to message startup time. 
 

5. A Coarse-Grain Parallel Multilevel k-way Graph 
Partitioning 
 
Because of the high message startup overhead it is required to modify the parallel 
multilevel k-way partitioning algorithm presented so that it performs fewer all-to-all 
personalized communication operations. From the discussion, it is clear that one way of 
doing this is to develop matching and refinement algorithms that do not depend on the 
number of colors of the graph.  
 

5.1. Coarsening Phase 
 
In fact, the motivation in using a coloring-based matching algorithm was to minimize the 
number of conflicts; thus, a non-coloring based algorithm can be used at the expense of a 
higher number of matching conflicts. The new matching algorithms consists of a number of 
phases. During phase i, each processor scans its local unmatched vertices. For each such 
vertex v, it matches it with another unmatched vertex u (if such a vertex exists) using the 
heavy-edge heuristic. If u is stored locally, then the matching is granted right away, 
otherwise a matching request is issued to the processor that stores u, depending on the 
ordering of v and u. In particular, if i is odd, a match request is issued only if v< u, whereas 
if i is even, a match request is issued only if v>u. This ordering is done to ensure that 
conflicts can be resolved with a single communication step. Next, every processor 
processes the matching requests that it received, grants some of these requests by breaking 
conflicts arbitrarily, and notifies the corresponding processors. The matching algorithm 
terminates when a large fraction of the vertices has been matched. This experiments show 
that for most graphs, very large matchings can be obtained with only four phases. Thus, the 
number of all-to-all personalized communications are reduced from two times the number 
of colors to only eight. 
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5.2. Uncoarsening Phase  
 
However, performing refinement without using coloring is somewhat more difficult. Recall 
that by moving a group of vertices of a single color at a time, we were able to ensure that no 
thrashing occurs during refinement. For example, consider the situation illustrated in the 
following figure 4(a), in which two vertices v and u are connected via an edge and belong 
to partitions i and j , respectively. Note that if we move vertex v to partition j we reduce the 
edge-cut by two, and if we move vertex u to partition i we reduce the edge-cut by five. 
However, as illustrated in figure 4(b), if we move both vertex v to partition j and vertex u to 
partition i , then the edge-cut actually increases by five. 
 
 
 
      
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
       
 
The coloring-based refinement algorithm is able to prevent such moves since it only allows 
concurrent movement of vertices that are not connected (i.e., independent). However, by 
looking closer at this example we see that an alternate way of preventing such type of 
movements is to devise a refinement algorithm that does not concurrently move vertices 
between the same partitions. That is, during each refinement step, for any pair of partitions i 
and j, it should only move vertices in one direction, i.e., it should move vertices only from 
partition i ( j) to partition j ( i). In particular, each phase of the new refinement algorithm 
consists of only two sub-phases. In the first sub-phase, the group of vertices to be moved is 

Figure 4: two vertices v and u belonging to partitions i and j, respectively are moving
partitions j and i respectively increasing edge-cut by five.  
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selected so that vertices move from lower- to higher-numbered partitions, and during the 
second sub-phase, vertices move in the opposite direction. Thus, the new refinement 
algorithm reduces the number of all-to-all personalized communication operations that are 
required in each refinement phase from two times the number of colors to four. 
 
Note that this new refinement scheme allows vertices that are connected and belong to the 
same partition to be moved concurrently. For example, consider the example illustrated in 
the following figure 5(a),  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
in which vertices v and u, both of them belonging to partition i, are moved concurrently to 
partition j, since each such move individually leads to a reduction in the edge-cut. However, 
this type of moves will never lead to thrashing. In fact, the reduction in the edge-cut 
obtained by concurrently moving connected vertices from the same partition, is at least as 
high as the sum of the edge-cut reductions of each individual move. This is illustrated by 
the example in figure 5(b). Thus, the coloring-based refinement algorithm was in essence 
too restrictive while selecting vertices for movement.  
 
By using the new refinement scheme, there are certain type of moves that may potentially 
lead to thrashing. Consider the example shown in the following figure 6(a), in which vertex 
u is connected to vertices v and w each belonging to a different partition. If vertex v is 
moved to partition j the edge-cut reduces by one, and if vertex u moves to partition k the 
edge-cut reduces by one. However, as illustrated in Figure 6(b), if both moves take place 
concurrently, then the edge-cut actually increases by one. Fortunately, there are not many 
vertices that can lead to this type of movement. This is because, this type of moves can only 

v 

Figure 5: two vertices v and u belonging to partitions i moving concurrently to
partitions j are increasing edge-cut at least as high as the sum of the edge-cut reductions
of each individual move. 
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happen among a sequence of vertices that are connected via path and they are interface 
vertices to multiple domains. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The number of all-to-all personalized communication operations required for each graph Gi 
by the new matching and refinement algorithms is now only 16  where eight for matching 
and eight for refinement, assuming that it  performs two passes of the refinement algorithm.  
 
The implementation of this coarse-grain algorithm is memory efficient. In particular, each 
processor requires memory proportional to the size of the locally stored portion of the 
graph, i.e., O(n/p), where n is the number of vertices in the graph.  
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Figure 6: Vertices v, u and w belonging to partitions i, j and k respectively where v and
u are moving concurrently to partitions j and k respectively increases edge-cut by one. 
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6. Conclusion 
 
The coarse-grained parallel multilevel k-way partitioning algorithm has a number of 
enhancements over the parallel coloring based algorithm that both improve its performance 
as well as extend its functionality.   
 
As the size of the successively coarser graphs decreases, the amount of time required to 
generate the next level coarser graphs is dominated by the communication overheads. This 
is because, the graphs become too small and the message startup overheads dominate the 
communication time. At this point, the overall amount of time required to generate the 
remaining coarse graphs as well as the amount of time spent in refining them, will decrease 
if the work associated with that is assigned to fewer processors. The coarse-grain parallel 
algorithm performs such type of graph folding. In particular, as the coarsening progresses, 
the size of the coarse graph is monitored, and if it falls bellow a certain threshold, it is then 
folded to only half the processors. Now these processors perform any subsequent 
coarsening (and refinement during the uncoarsening phase). This folding of the graph to 
fewer processors is repeated again if necessary. These experiments have shown that this 
successive folding of the graphs to fewer processors improves the overall run-time of the 
partitioning algorithm. The size of the graph after which folding is triggered depends on the 
characteristics of the underlying interconnection network. If the message startup overhead 
is very small, then smaller graphs will trigger a folding, whereas, if the message startup 
time is high, a larger graph will be required. 
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