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Abstract

An dgorithm for optimaly edge coloring series padld graphs is presented in this paper. It
contains a linear time implementation, as wdl as a padld implementation, of the dgorithm
that runs in O(log® n) time usng O(n) processors. The sequentid implementation, which is
optimd, improves the best-known dgarithm. The padld implementation of the dgorithm is
the firda known NC dgorithm for this problem. The dgorithm is based on the ear
decompogtion of a grgph. It is shown condructively that for every biconnected series
pardle graph there exists an open ear decompostion, such tha its corresponding tree of ears
has an O(log n) depth, and this ear decompodtion contains no ear whose endpoints are
connected by asingle edgein its parents.



1. Introduction

The problem of edge coloring graphs is to assign colors to the edges of a graph in such a way
tha edges with a common endpoint have differet colors The minimum number of colors
necessary to color the edges of a graph G is cdled the chromdatic index of G, and is denoted
by x(G). The wel known theorem of Vizing states that X'(G) is either NG) or A (G) + 1
for each graph, where A (G) denotes the maximum degree of a vertex of G. The roots of the
problem can be traced to the "four-color conjecture’. According to this conjecture (proved by
Appd and Haken [AHT76]), every planner mgp can be colored with four colors, so that no
regions with a common border get the same color.

Throughout the paper, G(V,E) denote an undirected graph of n = |V| vertices and m = |E|
edges The grgphs contain no loops and no multiple edges. degG(v) is used to denote the
degree of vinagrgph G.

2. Application of Graph Coloring

The practicd gpplications of edge coloring ae vaious scheduling problems desgn of
expeiments ec. For example, when a given scheduling problem in a digributed memory
padld machine has been patitioned, and two adjacent processors need to communicate
they do a parwise exchange of daa It is nesded to find out a minimum communication
schedule s0 that dl data have been exchange. This problem can be formulated as a greph
problem as follows. The processors are represented by the vertices of the graph G; the need
to communicate between two processor is represented by an edge between two processors. A
minimum schedule corresponds to an optima edge coloring of Gr. Gr will result in a series
padld grgph, when the digributed memory pardld mechine is a minimum isolaed falure
immune netwak or a 2-tree.

3.Series Parallel Graph

One of the classcal classes of graphs is series parallel graphs A wdl sudied problem is the
problem to recognize series pardle graphs. Series pardld graphs have treewidth a most
two. (Some authors mistakenly date that the class of series pardld graphs equds the dass of
graphs of treewidth two, but for ingance K 3 is not series pardld.). If a series padld graph
is atriple (Gst), with G = (V, E) agraph , and s t ...V, we can sy that G s a series pardld
graph. sand t are cdled terminds of G; we dso cdl sthe sourceand t the sink of G.



3.1Recognition Algorithm for series Parallel Graph
3.1.1Hans L. Bodlaender and Babette de Fluiter algorithm

If G is an undirected, not necessarily smple graph with two specified vertices s and t, and we
want to determine if (Gst) is a saries padld, the dgorithm condsts of two man phases.
The fird phase conggs of O(log m) reduction rounds. In each reduction round, a number of
reductions is carried out, each round (when the input is a series pardld grgph) reducing the
number of edges of G with a leest a condant fraction. In the firgt phase, the input graph is
reduced to a sngle edge {st}, if and only if it is saies padld. If (G,sst) is not series
padld, i.e, we do not have a dngle edge after the firsd phase, then the dgorithms stops.
Otherwise, we proceed with the second phase. In the second phase, dl reductions ae
undone, in an equdly large number of rounds. During the ‘undoing of the reductions we
have to mantan a minima sptree of the current grgph. (One can additiondly dso mantan
abinary sptree of the current graph).

3.1.2 Eppstein [ Ep 92] Algorithm

Theorem:
A biconnected greph G is a series pardld graph if and only if every open ar decompogtion
of G isnested.

Description:

An ear decompostion of an undirected biconnected grgph G is a patition of the edges of G
into a sequence of ears Ei, Ep, B3, o , En. Each ear is a dmple pah in G with the
following properties

1. If two verticesin the path are the same, they must be the two endpoints of the path.

2. The two endpoints of each ear E, i > 1, gopear in the previous ears | and ', withj <i
adj <i.

3. Nointerior point of E isin g for any j <i.

The first ear E can be ether a sngle edge or a cycle. In this paper, we assume that the firg

exr is a cyde An open ear decompaogtion in one in which the endpoints of each ear, except

the first one, mugt be distinct.

Given a graph G and an open ear decompostion ED = { &, B, Es, ...... , Kk} of G, we sy
thet E is nested in E if j < i and the endpaints of £ both appear in . For such nested ears,
let the nest interval of E in E be the path in B between the two endpoints of E. ED is nested
if the following condiitions hald:

1 Foreschi>1lthereissomej <i suchtha E isnested in E.



2. If two ears E and E are both nested in the same ear E , then ether the nest interval of &
contains that of E-, or vice versg or the two nest intervads are digoint; i.e, no two nest
intervalsin each ear cross each other.

4. ACompaction Lemma

Eppsten's [Ep 92] results showing, in what we cdl a Compection Lemma, tha every
biconnected series pardled grgph has an open ar decompostion ED, where its corresponding
tree of ears is of O(log n ) depth. The ear decomposition contains No ear whose endpoints are
connected by an edge in its parent. The Compaction Lemma is important for establishing the
edge coloring problem in NC, and for reducing matching and coloring problems in series
pardld graphs, into Imilar problemsin smpler grgphs.

We condder a series padld graph, decomposaed into an open ear decompostion EED, with
its corresponding tree of ears TE. For the ear decompostion we use a data dructure in which
each edge in ear E knows the index i and has two pointers, pointing to the two neghboring
edges on both Sdes of theedgein E.

The operation reduce;, compress TE, S0 that the depth of the resulting tree of earsin
O(log n). It is performed by the operation with respect to centroid decompaosition of TE.

The operation absorb modifies the tree of ears 0 tha there are no ears whose endpoints are
connected by a dngle edge in its paent. Literdly, a parent ear absorbs its child, while

leaving out asingle edge.

Procedure Tree—Trim (TE)
Input: A tree of ears TE of an open ear decomposition of a biconnected series pardld graph
G

Output: A tree of ears of G of O(log n) depth.

1 Find acentroid decompaostion of TE;
2fori <=lto[logn] do

3 reduce (TE);

4 for every ear E in pardld do

5  aosorb (B);

5. The Generic Edge Coloring Algorithm

The generic edge coloring dgorithm congds of two phases:

1. A reduction phase, in which we reduce O(n) edges from the graph, while decrementing
the maximum degree of the reduced graph.

2. A coloring phese, in which we begin by coloring a degree 3 sies padld grgph and
continue by coloring the reduced edges in the reverse order of their removal.



Let an edge-ear be an ear that consds of a Sngle edge, and let a two edge ear be an ear that
conggts of exactly two edges. We define three types of edges to be reduced:

Anedge (u, v) isof type-
1. If ether uor v has degreel.

2. If they belong to a par of coincding two-edge ears. Two ear E and E; are coindding if
the endpoints of E are equd to the endpoints of E;.

3. Edgesthat beong to an ear matching.

Edges of type 1 and 2 that are reduced in iteration k is denoted by R, and edges of type 3
that are reduced in iteration k by M.

Algorithm SPColor:

Reduction phase:
N <= AQG
k<=0
&G &= G
While AAGK)>4do
Find an open ear decompaosition ED of Gy
Condtruct the tree of ears of ED
Fnd R, the set of edges of type 1 and type2
Gt & G — R«
If A\ (Ge1)>4then
Find an ear matching Mk in Ge1
G1 4= G — Mk
K= k+1
fi
od

Coloring phase:
find a3 edge coloring of G,
for i <= k downto O do
color the edges of Ry usng the least possible colors
color theedgesof Mk with A
INE=V !
od



6. The Sequential Implementation

6.1 Ear Matching

To obtain a matching in a series padld greph that is “suffidently” large and meatches dl
vertices of maximum degree, the problem is reduced into finding such a matching in a cdosd
ear pah grgph. The dgorithm traverses the tree of blocks of the graph and finds a matching
tha aways matches the top cut-vertex of every block. For every block, open ear
decompaosition is found and traverse in preorder its compacted tree of ears. Then a match is
found for every ear path; thus the matching date of the firsd and last edges in the path might
be forced, as a result of a match that was obtained for some predecessor of the present ear

path graph.

The fdllowing conditions are sat for diagond D that beongs to a matching in an ear path
graph.

Rule DX If D isan odd length ear sdlect the two end-edges to the matching.
Rule D2 If D isan even length ear sdect one end-edge of D, and one path edge.

The details of ear matching are given in Procedure Ear-Matching.

Procedure: Ear-Matching (G, M)
Input: A seriespardld graph G
Output: An ear matching of M of G'.

1 Fnd connected components and biconnected components in G. Condruct the
tree TB of biconnected components for every connected component. Traverse the
nodes of TB (in preorder) and do the following for every node G, of TB.

2 If G, isnot angleton then
(22) Fnd an open ear decompostion of G, and the tree of ears TE of G, darting
from a cycle that includes the top-cut vertex t.
(22) CT <=TreeTrim (TE).
(23) Traverse the nodes of CT (in preorder): For every node condructs the ear
path graph H, and close it. If one or two edges dready beong to the matching,
then smply sdect edges dternatdy, from the pah edges of Hy. Otherwise use
Algorithm Match-Polygon to find ameatching M in H.
(24) Apply rules D1 and D2 for every diagond that belongsto M.

3 if G, isasngleton (x,y) then
if X isunmatched, add (x,y ) to the matching M.

end Ear Matching.



6.2 Coloring a Series Parallel Graph of Degree 3

To obtan an optima edge coloring of a series padld graph of degree3, a coloring dgorithm
thet is locd, i.e, the colors are assigned to edges, based on locd information, and then adjust
the colors as globd information becomes available. The coloring is divided into four Sages:

Coloring asmple graph (ladder graph).

Coloring an ear path graph, usng the coloring of ladder.

Coloring a biconnected series pardle graph, using the coloring of an ear path graph.
Adjugting colors between different biconnected components.

> OWNE

6.2.1 Edge Coloring Ladder Graphs

A graph is a ladder grgph L if it is a biconnected series pardld greph of degree a most
three, and for some open ar decompostion ED = { g, E, ..... , B} of L, B,...., Eare nested
in E;, and the nedting tree of E; is a path. E is cdled the perimeter , and E,........... E ae
cdled the geps of L.

Procedure Color-A-Ladder (L)
Input: A ladder grgph L.

Output: An edge coloring of L.
1 Patition L into Lo,........ ,Lr, where each Li is a subladder congsts of nonsngle steps,
closed by two single steps.

2. Fori <<= 0 to rl coor the paimeter of L;, such tha the two edges that are incident on
Li+1, and the Sngle step shared by L, ae colored in three different colors Assgn two

different colors to the end edges of internd steps. The choice of colors depends on the
colors assigned to L.y, 1 <i < r-1. For Lo the choice of colors depends on the colors of
the two edges that were determined by a coloring of another ladder previoudy.

3. Coalor the perimeter of L, such that two edges el and €2 that are incident to L in the ear
path graph are colored in two different colors. If L, ends in a nonangle step, connect el
and €2 by avirtud edge to form a subladder. ( This guarantees that €l and €2 are colored
in two different colors)

End Cdor-A-Ladder.



6.2.2 Edge Coloring Ear Path Graphs

Cdor-Ear-Path finds a coloring of an ear pah grgph Hk, by bottom up traversd of the
nesting tree NTX. NT is traversng according to its centroid decomposition, starting from
centroid level2. Leaves (that are centroid leve 1) are associated with their parents.

Procedure Color-Ear-Path (Ex)
Input: An ear E.
Output: An edge coloring of B, that is condgtent with its parent and childrenin CT.

Phase One: Construct the ear path graph Hy of ., and the nesting tree NTX of Hy.
Find a centroid decomposition of NT<.

Phase Two: Dofori ¢—2tolog n:
For every centroid path p of centroid levd i , let L be the subgraph of Hk
asociated with p and dl the leaves that are children of nodes in p. Then Color-A-
Ladder(L), and contract L from Hy.

end Cdor -Ear-Peth.

6.2.3 Edge Coloring Biconnected Series Parallel Graphs of
Degree 3

To obtain a 3edge coloring of a biconnected series pardld greph of degree 3, the compacted
tree of earsistraversang in preorder, finding for every ear acoloring of its ear path graph.

Algorithm 3Color (G)
Input: A biconnected series pardle graph G of degree 3.

Output: A 3-edgecoloring of G.
1 Findan ear decompogtion ED of G, and congruct the tree of ears TE(ED).
2 CT <=TreeTrim (TE).
3 for every ear K of CT in preorder do
(3.1 Color-Ear-Peath (Ey);
(3.2) update colors in K according to the colors of the end-edges of Ey, tha
were assgned by its parents.
end 3Color.



7. The Parallel Implementation

A padld dgoithm is conddered dfident if its time complexity is polylogaithmic, with
polynomidly many processors on the PRAM. NC denotes the dass of problems that has
such dgorithm.

7.1 Parallel Ear Matching

The padld implementaion of the ear matching dgorithm adds another dimendon to the
complexity, and that is the necessty to find a matching in each block that is condgent with
matching in other blocks. A solution for tha would be to find a decompostion of TB that
would dlow us to process sevard blocks in padld, which in tun would guarantee a
polylogarithmic processon time. The centroid decompostion agan used, this time for TB,
and process blocks a the same centroid level concurrently, ingead of traversng TB in
preoreder. Two different matching is founded for every block, so that one of them is laer

selected as afina matching according to the status of the top cut-vertex of the block.
Algorithm Par -Ear-Matching

Input: Ansubgraph G of G.

Output: Anear matching M of G, that coversdl vertices of maximum degree.

1 Fnd connected components in G. Find biconnected components in G, ad
condruct dl TB's Find a centroid decompostion of dl TB's Méake dl centroid
paths indigtinguished.

2 for each biconnected component BC in pardld do the following:

(21) Find an open ear decompodtion of BC, dating from a cyce that contans
the top cut-vertex of BC, and congtruct itstree of ears TE.

(22) CT <= Tree Trim(TE).
(23 fori <=1to2do

{We find two machine M1 and My inBC , Vh assumes that the top cut-vertex
IS meatched, and M, assumes that is unmatched.}

231 Mi<=0



2.3.2 forj ¢<=0toheght (CT)—1do
for every ear B in depthin pardld do

-congtruct the ear path graph Hk for B , and close Hk.
-If one of two edges dready beong to the maiching, then
dtenatdly add edges to M;from the path edges of Hyg
Otherwise,
M; <= M; U Modified —Match — Polygon (Hx ).

3 If more than one centroid path darts a the same vertex then make one of them

diginguished.

4. for every centroid path r in every TB in pardld find digance for every block that
belongstor.

S fori ¢=[logn] downto O do {top-down traversa of TB}
(5.1) for each centroid path r in centroid level i in pardld do Match Singleton.
(5.2) for each BC in centroid levd | of TB in padld choose the maching that
corresponds to the datus  of its top cut-vertex. If its top cut-vertex is dreedy
meatched add M; to M, otherwise add M, to M.

end Par-Ear-Matching.

7.2 Edge Coloring Series Parallel Graphs of Degree 3, in
Parallel

To run effidently in padld, the modified Algorithm 3Color is as follows: It now comprises
two phases of tree traversas.

Phase One: each ear path graphis colored in pardld, by traverang the nested tree;
Phase Two: an update of the colors is done while traversing the tree of ears, in pardld, leve
by leve.

When edge coloring ladders are in pardld, colors are adjused between subladders, in a
“binary tree fashion”. For that purpose, for each ladder L; we color two edges that are
inddent on Li-1 and the sngle ladder step shared by L;.1, in three different colors. Colors are
changed in only one of the two subladders.

Lemma : Algoithm Color-Ear-Path can be executed in O(logf n) using n processors on an
EREW PRAM.

Proof: Phase one takes O(log n) usng n processor [Ep 92]. Edge coloring ladders that
bdong to some cattroid levd in the nesting tree takes O(log n ) time usng n processors. This
is d0 the complexity for contracting the ladder grgphs. But since dl the edges in a
subladder need to read the colors of the Sx edges in the boundary, this can be done only ona



CREW PRAM. By a dmple broadcast of the colors that cregte the read conflicts the
dgorithm can be executed on an EREW modd with an additiond factor of O(log n) time
Hence, Phase two takes O(long® n) time using n processors. Phase tree takes O (log? n) time
usng n processors on an EREW PRAM. Thus, the overdl running time is O(l n) usng n
processors on an EREW PRAM.

7.3 The complexity of the Parallel Implementation of
Algorithm SPColor

Theorem:
Algorithm SPColor optimally edge colors series pardle graphs on an EREW PRAM in
O(log? n) time using a processors.

Proof:
Maon etd. [MSV86] showed how to find an ear decomposition ED and how to condruct tree

of ers TE in pardld for any graph. In fact, the edges of TE are obtained during the
condruction of the ear decomposition. Gazit [Ga 91] showed how it can be done on an
EREW PARM for planar graphs. We find typel edges on O(1), by assgning a processor to
every vertex in Gk. For edges of type (2) we do the following: find alist of dl two-edge ears,
using the doubling technique on ED. Sort the list to obtain a partition of the list into subsets

of coinciding two-edge ears. A type (2) reduction congsts of apair of coinciding two-edge
ears. In order to avoid conflicts in reducing the edges from the adjacency ligt of Gy., we use a
data sructure caled conflict graph X. The set of vertices of X aretype (1) and type (2)
reductions, and it has an edge if two reduction attempt to reed from or write into the same
entry in the adjacency ligt. We use the agorithm of Goldberg e d [GPS 87] to find the
maximal independent sats that cover X. The complexity isdonein O(log* n) timeusngn
processors. We now assign a processor fro each reduction, and let each reduction processor
delete an edge, or apair of coinciding two-ears. Each such deletion is stored in Ry wherej is
some independent et in X. The matching processin Gy, takes O(log? n) timeusing n
processors, which yields arunning time of O(log® n) time with n processors for the whole
reduction phase.

The running time of the pardle verson of Algorithm 3Color is dominated by Procedure
Color-Ear-Path. A concurrent gpplication of Procedure Color-Ear-Peth on dl ear path graphs
takes O(log® n) with n processors. Updating the colors between the different ear path graphs
takes O(log n) time using n processors on the CREW PRAM, which grows by afactor of log
n on an EREW PRAM. Thus agorithm 3Color takes O(log® n) using n processors on an
EREW PRAM. Adjusting colors between different block s is done by contraction the tree of
blocks, according to its centroid decomposition, in O(log? n) time using nVlog n processors.
The dlocation of colorsto the reduction of type(1) and (2) is done by the doubling

technique and takes O(logn) time using n processors. The coloring of the edgesisdonein
constant time using N processors.



8.Conclusion

In the above discusson, new obsavations are combined with recent results about series
padld graphs to obtan an dgorithm for edge coloring series padld graphs that used a
minimum number of colors This work was driven by an atempt to find an NC dgorithm for
the problem and ended with an improved sequentid dgorithm, proving the importance of the
desgn of pardle dgorithms in a broader context. It has been shown that every series pardld
graphs can be decomposed into ear decompaosition that yields atree of ears of log n depth.

Findly, we can note tha a posdble direction of Implifying the dgorithm is to use a
maximum weighted metching algorithm. By finding a proper weght assignment to the edges
we can posshly guarantee that the maiching process maiches dl vertices of maximum
degree. This could be obtaned by sting the following weights N + 1 for edges covering
one maximumdegree vertex, 2N for edges covering two such vertices, and 1 for dl other
edges, for some aufficently lage N . This will give a maching process that covers dl
maximum degree vertices and used as many edges as possble within that condrant. The
proof of the present agorithm shows tha such a matching process exists and that it has
enough edgesinit.
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