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Abstract

This thesis addresses the storage of application data in parallel file systems. With

the ever-increasing compute performance of parallel systems like clusters and su-

percomputers, increased amounts of data are processed. The size of this data often

exceeds the capacity of the local main memory, requiring out-of-core storage in a file

system. Parallel file systems are used to provide a shared view on i/o resources for

multiple application clients and provide parallel, concurrent access to the storage

devices.

We analyze optimization strategies for parallel file systems that help to improve the

i/o performance of common parallel applications. By evaluating different i/o pattern

analyses of existing parallel scientific applications, we identify two critical parts that

can be optimized to provide high-performance i/o to parallel applications. Those

parts are the communication patterns between i/o clients and i/o servers and the file

data distribution on the i/o servers. Both parts together define the transfer of file

data in the parallel file system.

Potential optimization strategies for these critical parts are discussed and evaluated

throughout this thesis. One combination is chosen for implementation in a parallel

file system that stores file data in the main memory of remote compute nodes.

Utilizing the optimized strategies in this parallel memory file system, we are able

to clearly exceed the i/o performance of standard parallel file systems for common

application types.
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Chapter 1

Introduction

1.1 Motivation

Parallel systems have shown a huge performance increase over the last decades.

Projects like the list of the ”Top 500 Supercomputer Sites” [1] show that the per-

formance growth rate of these supercomputer systems nearly stays constant over

the years [2]. This increasing performance allows parallel systems to process prob-

lems of increased size. Larger problems usually process more input data and create

more result and temporary data. This data needs to be transferred from and to the

underlying storage devices. The i/o performance growth rate of traditional storage

devices like hard disks, however, can not keep up with the pace of processing perfor-

mance [3, 4, 5], generating an ever-increasing gap between processing performance

and i/o performance of a parallel system. This means, parallel systems can generate

data more rapidly than this data can be stored by common i/o devices. This results

in an i/o bottleneck, where the i/o subsystem is limiting the overall application per-

formance. The standard access to i/o resources is serialized, for example with the

Network File System nfs [6]. According to Amdahl’s law, however, serialized parts

of an application can significantly reduce the parallel scalability [7].

The most obvious solution to overcome this performance gap is to use parallel i/o.

It uses multiple paths to multiple i/o storage ressources. By utilizing multiple paths

to data, applications can access the storage ressources in parallel, increasing the

overall achievable i/o performance.

Parallel file systems support this approach, mainly by distributing file data among

multiple storage resources. This can increase the achievable i/o performance up to

the product of the number of paths to different i/o devices and the performance of
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a single i/o device. This standard approach of parallel file systems can become a

bottleneck again, when the file distribution parameters do not fit the access schemes

of applications. A typical i/o device delivers best performance when accessing the

data in large contiguous blocks. A mismatch between the distribution scheme of the

parallel file system and the access scheme of an application, however, can generate

many small requests to the i/o devices.

Another potential bottleneck is the communication of file system servers and clients.

When clients need to communicate with servers that do not hold the requested

data, the performance decreases. Furthermore, the already mentioned mismatch

of distributed and accessed data can also generate many small messages between

clients and servers, while networks deliver best throughput for large messages.

In some parallel file systems there already exist solutions for these potential bottle-

necks. We analyze and compare these solutions and present optimized approaches

for parallel file systems in general. We are able to show significant performance

increasements by using these optimizations.

1.2 Goals and Targets

This master thesis presents optimization strategies for parallel file systems. The

thesis analyzes two basic parts of a parallel file system: The mapping of application

clients to i/o servers and the distribution scheme of file data between these servers.

The mapping defines which server is contacted for i/o requests by each client over the

network, while the data distribution manages the storage of file parts on multiple

servers. Taken together, these two parts define the access of applications to i/o data.

We developed a parallel file system that stores file data in the main memory of

remote cluster nodes. The suggested optimization strategies will be evaluated in

this parallel memory file system. It currently utilizes two basic approaches for

the client-server mapping and the data distribution. The sophisticated techniques

discussed in this thesis will be compared to these basic approaches to evaluate the

achievable performance increasements.

Using this optimization strategies we show a significant improvement in the perfor-

mance of typical parallel scientific i/o applications.
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1.3 Roadmap of Thesis

Chapter 2 introduces the general architecture of parallel i/o systems, with high-

level interfaces, the parallel file systems and the underlying storage hardware. It

describes different file system architectures and shows the current state-of-the-art.

In the following chapter 3, our own development, the parallel file system memfs is

introduced with special respect to the design criteria that differ from existing file

systems. Chapter 4 describes the access patterns of scientific applications, which

facilitates the definition of requirements for an optimized parallel file system. Fol-

lowing this, we present an i/o cost model in chapter 5 that helps to measure the i/o

performance of different file systems and optimization techniques. The following two

chapters present optimizations for two selected parts of a parallel file system: The

mapping of clients to servers in chapter 6 and the distribution of file data between

i/o servers in chapter 7. Chapter 8 discusses potential combinations of client-server

mapping and data distribution optimization techniques. Based on this comparison,

a combination is chosen, that is implemented in the parallel memory file system

memfs. Chapter 9 describes this implementation and discusses the achieved re-

sults. The last outlines the most important conclusions of this thesis and gives an

outlook on future work.





Chapter 2

Parallel I/O Systems

This chapter introduces parallel i/o systems in general and presents some of the most

widely used parallel file systems. The frequently used abbreviations of this and the

following chapters are only defined once and can be found in the nomenclature prior

to the bibliography of this thesis.

According to the definition in [4], a parallel i/o system shows three main character-

istics:

• It stores file data on multiple storage devices,

• utilizes multiple connections between storage devices and compute resources,

and

• provides high-performance concurrent access to the storage devices for multiple

compute resources

By guaranteeing these three characteristics, multiple compute resources can access

the storage devices through multiple connections in parallel. The third characteris-

tic clarifies the difference to distributed i/o systems. Distributed systems also utilize

multiple connections and storage devices, but are not designed for high-performance

concurrent access to these. Distributed file systems often serialize accesses to the

shared resources. nfs [6] for example is a distributed file system that uses seri-

alization of accesses. In this thesis nfs is not discussed further, because it is not

optimized for high-performance i/o.

A parallel i/o systems consists of multiple layers, as illustrated in figure 2.1. The

lowest layer encapsulates the storage hardware, i.e. the storage devices like disks and

the interconnects that are used to transfer file data. This layer also determines the
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High�-Level I/O Library

MPI-IO Implementation

Parallel File System

Storage Hardware

Figure 2.1: Parallel I/O Stack. Source: Based on [4]

maximum reachable i/o performance of the whole i/o system, by the performance pa-

rameters of the storage devices and interconnects. The parallel file system operates

above that layer. It manages the data on the storage hardware, organizes data in

files and directories and coordinates the access to files [4]. Most parallel file systems

support the usage of raid systems at storage hardware layer for improved reliability.

The most common mechanism to improve performance in a parallel system is to use

striping in the file system layer. Striping means to distribute file data blockwise to

multiple i/o devices or i/o servers. It allows to leverage multiple servers, disks and

network links during concurrent i/o operations of an application to shared files [8].

The application clients can concurrently access the file system through different

connections. Parallel file systems have to coordinate accesses by multiple applica-

tion clients to data, which can reintroduce bottlenecks [8]. Coordination is required

to provide a shared and consistent view on the file system data for an application

processed by multiple clients. Most parallel file systems use locking subsystems to

ensure consistency of the stored file data. These subsystems lock files or parts of files

to keep the file system in a consistent state. A sophisticated design of the parallel

file system is required to minimize serialization of requests and facilitate parallelism

in client accesses. File systems that cache data must furthermore especially ensure

the consistency of caches.

The standard interface for parallel i/o is mpi-io [9], which is a part of the standard

programming interface for parallel applications, the Message Passing Interface mpi.

This layer calls the parallel file system functions to access the i/o data. mpi-io

shows a great benefit in comparison to the standard Unix posix-interface [10] by

providing structured data accesses to the application. mpi-io translates accesses

from the application into accesses that ”can be performed efficiently on the under-

lying parallel file system” [4]. It also helps to decouple an application from a file

system by providing an interface between the application and the underlying file

system. A file system that implements the mpi-io interface can be accessed by

any application that uses mpi-io operations. In the next section the mpi-io ar-

chitecture is presented in more detail. On the highest layer high-level i/o libraries
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like ”hdf5” [11] and ”Parallel netCDF” [12] on top of mpi-io provide more struc-

tured data accesses for clients. They allow an application programmer to directly

pass multidimensional data types to i/o functions without the complexity without

complex datatype definition as in mpi. The libraries translate these datatypes and

structured accesses into mpi-io accesses. These high-level i/o libraries map ”appli-

cation abstractions to a structured, portable file format” [8], which simplifies the

development of high-performance parallel i/o applications. However, these libraries

can add significant overhead to the application runtime [4], since the highest layer

is implemented on top of mpi-io and has to rebuild i/o functions in mpi-io. An op-

timized implementation of an application that directly uses the mpi-io operations

can always reach at least the performance of the same application implemented with

high-level i/o libraries. The following chapters of this thesis only consider the direct

usage of mpi-io operations, because most high-level interfaces are built on top of it.

The authors of [8] name the following three points as the main requirements of a

parallel i/o system:

1. Provide mapping of application data into storage abstractions

2. Coordinate access by many processes

3. Organize i/o devices into a single space

The four layers of the parallel i/o stack work together as described above to fulfill

these requirements.

2.1 The MPI-IO Interface

mpi-io is a standard interface for parallel i/o, defined as a part of the mpi-2 standard

[9]. There exist several implementations of the mpi-io standard, the most commonly

used one is romio [13]. romio is included in mpich [14], Open mpi [15] and other

mpi implementations. It implements the ”abstract device interface for parallel i/o ”

adio [16] to create an abstraction layer of the underlying file systems. Any file

system that implements the adio interface can be used by romio for mpi-io calls.

romio takes standard mpi-io calls from an application and translates them in the

adio layer into calls optimized for a specific file system. Apart from the standard

i/o operations that exist in any i/o library, mpi-io supports special i/o functions and

constructs for parallel i/o. As these terms will be commonly used in the following

chapters, they are briefly described here:
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2.1.1 MPI datatypes

The mpi standard [9] introduces mpi specific datatypes. All mpi-io operations that

read or write data use mpi datatypes to describe the data in the i/o buffer. Datatypes

are also used to describe the accessed data of a file, via the concept of file views,

which is introduced in the next section. There exist basic datatypes for primitive

machine datatypes. Some C examples are listed below with the corresponding C

datatype in parantheses:

MPI CHAR (char)

MPI INT (int)

MPI FLOAT (float)

MPI DOUBLE (double)

Based on the basic datatypes the user can define new types. mpi provides several

constructors to create derived datatypes consisting of multiple basic datatypes lo-

cated either contiguously or noncontiguously. For example the vector constructor

allows to build a datatype consisting of equally spaced copies of another type. The

darray constructor builds a ”process’s local array obtained from a regular distribu-

tion of a multdimensional global array” [17].

A datatype built with a constructor can be used as the input for another datatype

constructor, building nested datatypes. ”Any noncontiguous data layout can there-

fore be represented in terms of a derived datatype” [17], especially nested strided

data layouts. Strides of a datatype are holes in files or buffers that are skipped in

accesses using this datatype. Using these constructors, complex data partitions of

applications can easily be represented by mpi datatypes. With mpi datatypes, an

application programmer is able to provide the whole access pattern of an applica-

tion i/o stage in a single function call. This is necessary to fully utilize the advanced

features of parallel file systems, as described in section 2.1.3. mpi datatypes are inter-

nally presented in a tree structure, expressing the nested structure. When accessing

file data, this tree structure is traversed to skip the stride parts of a datatype.

2.1.2 File Views

Many applications define file views to express the accessed data of a file for each

process. A file view describes the parts of a file that are visible to each process.

File views are for example used to describe strided partitioning of files among mul-

tiple processes. By setting file views the processes can access their parts as if they
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had a linear address space. This ”relieves the programmer from complex index

computation” [18], especially when accessing a file that is partitioned with nested

strided patterns, where the computation of offsets can become very complex (see

section 4.2). mpi-io and many high-level i/o libraries support the usage of file views.

In the mpi-io interface, file views are defined by three parameters:

• A displacement, which is an absolute byte position, giving the location where

the file view begins. This is especially helpful to skip file headers in views.

• The etype, which is the elementary ”unit of data access and positioning within

a file” [9]. Any mpi datatype (also a derived datatype) can be set as the etype

of a file view (some restrictions apply, see [9]).

• The filetype ”defines a template for accessing a file and is the basis for parti-

tioning a file among processes” [9]. It can be the single etype or a construction

of multiple instances of this etype. A filetype can contain holes, especially used

for partitioning a file. The filetype can be constructed using the functions to

create derived datatypes.

A view defines the data regions that can be accessed by a process. It begins at

the defined displacement. The filetype is repeated over the file. The process can

access all nonempty etypes of the filetype. See figure 2.2 for an illustration, where

different file views are used for three processes to partition a file. Each process can

only access the ”filled” etype units of its filetype, which is repeated over the file.

File views are managed in the mpi layer. The three parameters (displacement, etype

and filetype) are stored in the MPI File object that is created when opening a file

(see appendix A.2). The adio device of a file system uses these information to

access the file data according to the view. When accessing file data, the datatype

tree of the views’ filetype needs to be traversed, writing or reading only those parts

of the file that are accessible etypes of that view and skipping all other parts.

Views can also be seen as hints to the operating and file system. They define

the accessible data regions of clients and can therefore help to optimize the ”i/o

scheduling, caching and pre-fetching policies” [18]. A file system can for example

prefetch data for a client according to its’ file view.

2.1.3 MPI File access

Applications access file data in special access patterns, defining which process reads

or writes which part of a file. These access patterns can, however, be presented to
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etype

process 0 filetype

process 1 filetype

process 2 filetype

tiling a file with the filetypes:

...

displacement

Figure 2.2: Partitioning of a file with file views. Source: Based on [9]

the file system in different ways. The authors of [17] classify four different ”levels”

of representing an access pattern in mpi-io:

• The ”lowest” level 0 equals the standard Unix-approach, where each contigu-

ous part of a file is separately read or written by each process for itself. The

stride between each contiguous part is then manually skipped by a seek opera-

tion. This level requires multiple i/o function calls for noncontiguous file data

accesses.

• Level 1 extends the previous level by using the collective i/o functions provided

by mpi-io. Those functions indicate that all processes which opened the file

call this function, each with its own request parameters. The file system can

use optimizations for this collective case, as will be described in section 2.1.6.

• In level 2, each process defines a noncontiguous datatype and accesses all of

the required file data with it in one independent (non-collective) i/o function

call. This level reduces the number of i/o function calls and provides more

optimization potential for the file system, as described in the upcoming section.

• Level 3 is similar to level 2 except that it uses collective i/o functions, providing

both noncontiguous and collective optimization potential.

The four levels define increasing amounts of data per i/o request. The lowest level

accesses each contiguous part of a request with a single i/o call for each process,

while the highest levels accesses all file data in a single i/o call. The highest level

also provides the highest optimization potential to the underlying file system. The

performance improvement depends on how well the file system takes advantage of

the increased access information [17]. To optimize an applications i/o performance,

the programmer should always use i/o calls of level 3.
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S1

S2

C2

C1
write

S3

read

data

data

data

Figure 2.3: File consistency in distributed file systems

2.1.4 Sequential Consistency

The mpi standard [9] defines several conditions, especially the mpi-io atomic mode,

under which a file system must guarantee sequential consistency. Sequential consis-

tency was introduced by L. Lamport in [19] as follows: ”the result of any execution

is the same as if the operations of all the processors were executed in some sequential

order, and the operations of each individual processor appear in this sequence in the

order specified by its program”. For i/o operations this means that the results of

a write operation must either be completely visible to all other operations or com-

pletely invisible. To further illustrate this, see figure 2.3, where client C1 performs

a write operation to server S1 and C2 performs a read to S3. Assuming that these

requests access overlapping file regions, the result of the read operation must either

be the completely unchanged file data before the write operation or the completely

changed data, but not a mixture of both. In parallel file systems this is a challenging

task because the file system needs to avoid serialization of operations as much as

possible to provide parallelism.

2.1.5 Noncontiguous i/o

A noncontiguous i/o operation is performed, when an application client accesses file

data in pieces separated by gaps. mpi-io provides sophisticated access operations

to data that is read or written noncontiguously in many small pieces. There exist

three forms of noncontiguous i/o: data that is noncontiguous in the memory, in the

file or in both. The most common case is noncontiguous data access in files, which

for example occurs when partitioning a file between clients. This partitioning is

often done by using file views (see section 2.1.2). The concept of file views provides

a ”powerful way of specifying noncontiguous accesses” [20] of file data. Many real

parallel applications partition file data among multiple processes. This will be dis-

cussed in more detail in chapter 4. The traditional way to ”access noncontiguous
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Figure 2.4: Data Sieving. Source: [18]

data is to use a separate function call to read/write each small contiguous piece” [4],

as for example done by applications that use the posix-interface [10]. Because of

the high latency of i/o devices, however, accessing many small parts of a file sequen-

tially is very expensive. mpi-io offers the ability to ”access noncontiguous data with

a single function call” [4]. Then, the adio device can call optimized functions of

the underlying file system for noncontiguous data requests. If the underlying file

system does not support noncontiguous i/o natively, the adio device can also use

an optimization of romio called data sieving [21] for i/o operations, illustrated in

figure 2.4.

With data sieving, a read operation combines multiple noncontiguous i/o accesses

into one request including the strides (step 1 in figure 2.4). This large request is

performed, which ”reads a single contiguous chunk of data starting from the first

requested byte up to the last requested byte into a temporary buffer in memory” [21]

(step 2). The data sieving algorithm then extracts the originally requested parts

from this temporary buffer into the i/o buffer, skipping all strides (step 3). This

reduces the impact of i/o latency by performing a single i/o operation instead of

multiple calls. The extraction of contiguous parts from a noncontiguous buffer

is performed in main memory, which has a much lower latency than disk-based

devices (see [22]). However, the whole noncontiguous region including the strides is

transferred over the network in step 2, increasing the transferred data amount.

Write operations can use data sieving with read-modify-write patterns [8]. The data

reaching from the beginning to the end of the request is then first read into a tempo-

rary buffer, this buffer is modified according to the i/o request and then written back

contiguously to the disk. To guarantee sequential consistency (see section 2.1.4) this

write mechanism requires locking of the complete file region including the strides.

Concurrent changes to the stride parts would otherwise be undone when the buffer
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is written back to disk. Locking a whole contiguous part of a file, including the

non-accessed strides of a request, introduces additional serialization of requests and

reduces parallelism. romio therefore provides a ”user-controllable parameter that

defines the maximum amount of contiguous data that a process can read at a time

during data sieving” [21], limiting the locking to a region of this size. The parame-

ter is also used to limit the memory-requirement of potentially large noncontiguous

requests, which can span the whole file. Request sizes exceeding the value of this

parameter are split into subrequests, which are performed consecutively.

2.1.6 Collective i/o

The data of parallel applications is often partitioned among multiple processes ac-

cording to multidimensional distribution functions. This partitioning results in non-

contiguous requests of single processes as described previously. The noncontiguous

requests of different processes, however, ”may together span large contiguous por-

tions of the file” [21], for example when a matrix is partitioned among multiple

processes. mpi-io offers functions to describe collective i/o operations. The under-

lying adio device for a file system can then again either use file system specific

functions for collective i/o or use romio optimizations. romio basically uses a

technique called ”two-phase i/o ” [21] for collective i/o. Using two-phase i/o in the

first phase multiple processes access file data in large contiguous chunks and in the

second phase this data is distributed between the processes ”to the desired distri-

bution” [21]. This results in few, contiguous i/o accesses. This mechanism requires

the exchange of buffers between processes but can often deliver better results than

noncontiguous data access of individual processes (see performance measurements

in [21]).

The special parallel i/o operations data sieving and two-phase i/o are ”most useful

when combined with a high-performance parallel file system” [4], as described in the

upcoming section.

2.2 Parallel File Systems

This section briefly describes existing parallel file systems. The optimization for

parallel file systems developed in this thesis will take solutions of existing file sys-

tems into account. Therefore, some of the most important parallel file systems are

presented here. These file systems will be described with special respect to the dis-
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tribution of file data and the mapping of clients to servers, the two optimization

approaches this thesis analyzes.

Parallel file systems are designed for parallel access by multiple clients. Following

the definition in [4] they can be grouped in two basic architectures: The shared

storage architecture and the intelligent server architecture.

In a shared storage architecture clients access block devices on remote storage. The

main goal is to ”make blocks of [a] disk array accessible by many clients” [8]. Com-

plete disk blocks are read and written by clients. This is either done directly through

direct attached storage like a Storage Area Network (SAN) [23] or through inter-

mediate i/o servers that provide block-oriented access to local storage devices, i.e.

forward remote client requests to storage devices. Some shared storage file systems

use virtual blocks for abstraction of the physical blocks to support data migration

between servers and to provide a logical view of the directory structure of the whole

distributed system [4]. The virtual block device furthermore provides a mechanism

for adding or removing system hardware to or from the file system during run-

time. Virtual blocks can be migrated to or from the added or removed hardware

components. One drawback of the blockwise-access is the lack of native support

for non-contiguous file accesses. All accesses have to be translated into contiguous

block accesses on the client side before accessing the shared storage file system.

Noncontiguous access patterns can result in complex ”read/modify/write patterns

that could have been avoided if more fine-grained accesses were allowed” [4]. An-

other drawback is that complete disk blocks are transferred between i/o clients and

servers, even when only parts of these blocks are requested. This increases net-

work load and makes false-sharing of blocks between different clients possible [8].

The servers are not designed to extract requested parts of blocks, they just transfer

client request data to and from storage devices. A key component of shared storage

file systems is the locking subsystem, which is utilized to coordinate access to the

shared ressources [4].

In file systems that implement the intelligent server architecture the servers have

more responsibilities than just providing blockwise-access to an i/o device. All com-

munication with clients is done on a file and directory basis. This helps to support

more complex and structured data requests like strided accesses, because the file

system has more knowledge about what kind of data is accessed (for example a

whole file, some noncontiguous part of a file or a directory). The real disk blocks are

not visible to the clients, the file system is an abstraction layer from the concrete

storage of data [8]. The actual disk blocks are read and written by the intelligent

servers, so in case of partial block accesses only the requested parts are transferred,
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reducing network traffic compared to shared storage systems. Intelligent server sys-

tems often separate the storage of metadata from the storage of file data [4], offering

more flexibility in the number and placement of metadata servers. Metadata in file

systems describes a file, ”including owner, permissions, and location of data” [4]. It

is required to maintain the state of the file system, including the directory struc-

ture. Some intelligent server file systems only support the usage of a single metadata

server, because metadata operations require more coordination than file data oper-

ations. The single metadata server can become a bottleneck in large installations

with many clients accessing it.

The main difference between the two architectures is that shared storage systems

provide block-based access to a storage device and intelligent server systems provide

file- and directory-based access.

Our development, the parllel memory file system memfs can be grouped into the

latter architecture, because all requests are based on files and the servers provide

functions to further describe requests.

Many parallel file systems were developed in the last years, some for scientific re-

search, others for special parallel applications and again others for parallel i/o in

general. As this thesis cannot describe all of these developments, it focuses on

those systems that have shown the most significant impact on parallel file sys-

tem architecture. The parallel file systems most widely used today are probably

gpfs [24, 25, 26, 27] and pvfs2 [28], an advancement of pvfs [29]. Following

these, there are other interesting developments like Lustre [30, 31] and gfs [32].

One very interesting parallel file system in terms of data distribution schemes is

Clusterfile [18]. All of these are now briefly introduced.

2.2.1 Shared Storage Architecture

This section presents the parallel file systems gpfs and gfs with shared storage

architecture.

General Parallel File System

The General Parallel File System (gpfs) is one of todays most widely used par-

allel file systems. It is a development of ibm and implements the shared storage

architecture. It has especially shown its very high scalability and currently supports

installations of up to 2441 nodes and a file system size of around 2 PetaByte [33].
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It is utilized in many of todays fastest supercomputers (four clusters in the top ten

list of the ”Top 500 Supercomputer Sites” as of July 7, 2006 [33]) and has proven

its very high performance in those installations.

Instead of an explicit virtual block device, gpfs can utilize a ”Virtual Shared Disk”

(VSD) component, which allows remote access to storage devices attached to mul-

tiple i/o nodes. Alternatively, the VSD component can be omitted if all clients are

attached to a SAN and can directly access the storage devices. Then, all i/o traffic,

including metadata, moves over the SAN [4]. In gpfs, one of the nodes accessing

a file is designated as the metanode for that file [24]. This metanode is elected

dynamically for each file. Usually this is the node that has opened the file for the

longest time period. Only the metanode reads or writes the inode of a file from or to

disk. The metadata is stored in this inode, containing file attributes and data block

addresses. When a client needs to access a specific block it requests the data block

address from the metanode of the file. The i/o transfer is then performed using this

block address.

gpfs guarantees consistency by utilizing a distributed locking component [4]. This

locking component coordinates the shared access to the disk blocks [8]. The gran-

ularity of this mechanism is at data-block level, which means that write operations

to different data blocks of a file can proceed concurrently [4]. When a client writes

data to a file it requests a lock for one or more blocks [24].

gpfs furthermore uses prefetching to exploit disk parallelism. Data is read into

gpfs’ buffer pool from as many disks as necessary to achieve the bandwidth of

the switching fabric that the client uses to access the file data. gpfs recognizes

sequential, reverse sequential and several forms of strided access patterns (see [24]).

When recognized, data is prefetched into the buffer pool according to the access

pattern of the client.

Global File System

The development of the Global File System [32] began in 1995 at the University of

Minnesota. It was developed for large-scale computing clusters of the university, that

generated huge datasets which had to be written effectively to a central storage [34].

gfs is now maintained and improved at Red Hat, where it was put under the GNU

General Public License [32]. It uses a virtual block device architecture, the Logical

Volume Manager (LVM). Storage devices are organized in volume groups, which

are partitioned into logical volumes, the virtual equivalent of disk partitions. As in

gpfs, nodes are either directly connected to shared storage or a component provides



2 Parallel I/O Systems 17

remote access to storage devices over the Internet Protocol (IP) [4].

Data in gfs is stored as blocks on the virtual block device. gfs also uses a locking

subsystem, OmniLock, to ensure consistency of file data. The locking granularity can

be tuned to match application requirements and optimize system performance [4].

Red Hat gfs is used in many enterprise clusters to provide a consistent file system

image over multiple nodes. There, it is deployed in environments like databases, ap-

plication and web servers or high-performance compute clusters [32]. Those instal-

lations do not reach the sizes of supercomputer gpfs installations. gfs is currently

limited to installations of about 300 nodes [35].

2.2.2 Intelligent Server Architecture

This section describes some of the most interesting intelligent server parallel file

systems. It presents two file systems that show many design similarities, pvfs2 and

Lustre and one file system which introduces a special way of distributing file data,

Clusterfile.

Parallel Virtual File System

The Parallel Virtual File System pvfs2 [36] is a development of different scientific

research groups, including the Parallel Architecture Research Laboratory at Clem-

son University and the Mathematics and Computer Science Division at Argonne

National Laboratory. It is designed as a ”high-performance scratch space for paral-

lel applications” [4] and is also one of todays most-widely used parallel file systems.

pvfs2 utilizes two types of servers, metadata servers and i/o servers that handle

storage of file data. pvfs2 allows to distribute metadata among multiple servers

removing a potential bottleneck of pvfs 1 in large installations. These metadata

servers might also operate as i/o servers. The i/o servers store file data in the local

file system of a node to reuse existing solutions for the basic storage task [8]. By

doing this, pvfs2 does not need to implement a proprietary storage mechanism for

file data and can rely on sophisticated techniques of existing file systems. pvfs2

usually distributes data by striping it among i/o servers. It also includes a modular

system for adding new data distribution schemes to the system to support custom

file data distributions. These distributions can be defined to match common access

schemes of parallel scientific applications [28].

The access of file data by clients is based on handles. A handle is a large integer
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that uniquely identifies an object stored in pvfs2. Handles exist for files, directo-

ries, symbolic links and also for the file partitioning elements, the data blocks stored

at the specific servers. When accessing data, the filename is resolved into such a

handle. The client furthermore performs all data accesses using this handle. pvfs2

supports the distribution of the handles among an arbitrary amount of servers. This

is done by partitioning the handle space into ranges and delegating each range to

a specific server. Clients receive information about the handle range distribution

among servers at startup. A file name is resolved into a handle through a lookup

operation [28]. File data in pvfs2 is split into datafiles, each datafile is also identified

by a unique reference, the handle. When a client contacts the pvfs2-server responsi-

ble for that file for the first time, it receives information about the data distribution

function used to partition the file among the pvfs2-servers. Using this distribution

function, the client can compute the i/o server for each file byte. The distribution

function is cached by the client for future requests. It can not be changed after

opening a file, so no consistency mechanism is required for the distribution function.

The handle range concept furthermore makes it easy to add or remove pvfs2-servers

during runtime: When adding a new server, a range of references (handles) is allo-

cated for this server and added to the configuration table. When removing a server,

its references are distributed to other servers and the table is updated. After the

update, the clients need to be restarted with the updated table. This mechanism

decouples the servers from the data stored on them. Currently, client-restart is

necessary to update the configuration table, so updates are infeasible during the

runtime of an application. The authors of pvfs2 are currently investigating the

possibility to provide this functionality also during application runtime (see [28]).

pvfs2 does not provide posix consistency semantics or mpi-io atomic mode se-

mantics that guarantee sequential consistency as described in section 2.1.4. pvfs2

does guarantee atomicity of writes to nonoverlapping regions, even if these regions

are noncontiguous. If application clients do not write to overlapping bytes, subse-

quent reads deliver consistent results [28]. The mpi-io atomic mode needs support

at higher levels of the parallel i/o system stack when using pvfs2. The authors of

pvfs2, who also develop romio, state that this will probably be done with enhance-

ments to romio [28].

Lustre

Lustre is a parallel file system developed by Cluster File Systems, Inc. Its active

development started in 2002 and it is designed to provide high reliability, scalability
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and performance [30]. Lustre was released as Open Source software under the GNU

General Public License (GPL) [31]. It is a posix compliant file system designed for

large installations [30].

Lustre provides only one metadata server (plus one backup server) that every client

contacts when accessing a file for the first time. The metadata provides the clients

with the i/o servers that handle these files, the so called Object Storage Targets

(OST). The client directly contacts these OSTs and exchanges i/o data with them,

bypassing the metadata server completely. Although Lustre has been proven to be

very scalable, the single metadata server can potentially become a bottleneck. For

this reason, the authors are currently considering distribution of metadata informa-

tion among the cluster (see [30]).

Lustre is an object-based parallel file system where all entities are represented as

objects. Files are stored as objects on Object-Based Disks. This design especially

supports the exchange of components with other components which provide the re-

quired functionality. The network abstraction layer (NAL) for example provides

support for multiple types of networks, including TCP, Quadrics, Myrinet and In-

finiBand [30, 37].

Lustre supports strong locking semantics to maintain consistency of the file system.

The locking mechanism is distributed across the storage targets, each OST handles

the locks for the object it stores [30].

Clusterfile

Clusterfile [18] is a parallel file system that is developed at the university of Karl-

sruhe. A typical Clusterfile installation consists of four main entities: a single meta-

data manager, multiple i/o servers, multiple cache managers and multiple clients as

illustrated in figure 2.5. Clusterfile supports only one metadata manager, which can

become a bottleneck in large installations that access a high number of small files.

The i/o servers store file data in subfiles. These subfiles can be striped over multiple

i/o servers or be kept at a single server. The servers utilize the cache of the local file

system [18].

i/o clients can access Clusterfile through a kernel Virtual File Switch (VFS) interface

and a user-level interface. On top of this user-level interface the developers imple-

mented the mpi-io interface, so that mpi-io applications can be run with Clusterfile.

The developers of Clusterfile set special focus on the physical distribution of i/o

data between servers. They state that ”the performance and scalability of paral-
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Figure 2.5: Clusterfile components. Source: [18]

lel scientific applications with intensive parallel i/o-activity suffer significantly from

the mismatch between virtual partitioning and physical placement of file data” [38].

They furthermore argue that this is one of the reasons for ”under-utilization of disk

and network bandwidths” and ”decreased parallel exploitation of independent disk

capacity”. Clusterfile therefore supports flexible physical partitioning of file data.

The data distribution model is optimized for multidimensional array partitioning,

which is very common in scientific applications, but supports arbitrary partition-

ing [18].

Clusterfile distinguishes between the logical partitioning (the file views) and the

physical partitioning (the subfiles) of a file. The subfiles are not necessarily the

identity of the file views. Clusterfile utilizes a common flexible data representation

for both the physical and the logical data distribution. Both are represented by

the so-called nested pitfalls, which are an extension to the pitfalls developed

by Ramaswamy and Banerjee in 1995 [39]. Basically, nested pitfalls describe

nested strided segments of sequential buffers, but can express arbitrary distributions.

They are a compact representation of complex regular distributions and there exist

efficient algorithms for mapping and redistribution between two nested pitfalls [39,

18]. With this extension, an arbitrary data partitioning can be described for both the

physical and the logical data distribution. Obviously, this includes all mpi datatypes

that can be used to define file views.

A file in Clusterfile is partitioned into multiple subfiles, where the partition elements

are describing non-overlapping file regions and the union of all partition elements
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describes a contiguous region. These two constraints guarantee that each byte of

the file is mapped onto a unique partition element position. The single subfiles are

then either written sequentially to an i/o node or striped over multiple i/o nodes,

which is determined by the number of subfiles and the number of nodes. If there

exist more subfiles than i/o nodes, each subfile is written to a single i/o node. The

different subfiles are then distributed to nodes in a round-robin manner. If there are

less subfiles than i/o nodes, the subfiles are striped on disjoint sets of i/o nodes [18].

The publication [18] does not mention consideration of special cases, for example

when the number of subfiles is neither a multiple nor a whole-number divisor of the

number of i/o nodes.

A view in Clusterfile is ”a portion of a file that appears to have linear address” [18].

Views in Clusterfile have the same advantages as views in mpi-io, described in

section 2.1.2.





Chapter 3

Parallel Memory File System

MEMFS

This chapter presents the parallel memory file system memfs. As described in the

introduction, this thesis evaluates optimization strategies for parallel file systems.

memfs is used to review these theoretical strategies in a running parallel memory

file system.

The first section briefly introduces the motivation for the development of a new

parallel file system, shows specifics of a memory file system and presents the whole

project in which it is developed. To further motivate the development of memfs the

following section describes special applications whose demands are hard to fulfill by

currently available parallel file systems. Following this, the architecture of memfs

is presented.

3.1 Project Overview

memfs is developed in the viola project [40], which stands for ”Vertically Inte-

grated Optical Testbed for Large Applications in DFN”. This project builds and

evaluates a high-performance network testbed that connects different sites located

across Germany. The core of viola is the network that connects the project sites

with dedicated 10 GBit/s optical wan connections. Using this network, applications

can be run on multiple clusters located at the project sites. The high-performance

network also allows to couple remote clusters for applications with high data ex-

change between the processes. Parallel applications in viola are run with mp-

mpich [41, 42], a special mpi implementation for grid environments, that allows to
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spawn mpi applications over multiple cluster sites. mp-mpich is an enhancement of

mpich, it also includes the romio parts for parallel i/o.

The development of a solution for high-performance remote parallel i/o in viola is

split into two parts: tunnelfs [43] is used for transparent access to remote data

in a grid. It implements an adio device that handles all mpi-io operations of an

applications client. As the name expresses, the tunnelfs adio device tunnels the

mpi-io requests and communicates with remote i/o servers to fulfill the i/o requests

of clients. This is done transparently to the user, especially no changes of the

applications’ mpi communicators are required. The i/o servers are special processes

that are spawned by mp-mpich. They can utilize all file systems that are supported

on the server cluster as a target for the client operations.

memfs as the second part enables high-performance parallel i/o, comparable to any

parallel file system, but with the characteristic that it completely stores file data in

remote main memory. With memfs, data can be storead and retrieved from this

additional remote storage with high-performance.

Together with tunnelfs, memfs is utilized for high-bandwidth parallel i/o to the

main memory of remote clusters in viola. memfs operates without any disk i/o

and therefore completely removes the bandwidth limitations of hard disks. Instead,

it leverages the available memory resources of different cluster sites and is therefore

able to satisfy very high bandwidth demands.

3.2 Use Cases for a High-Bandwidth Parallel

Memory File System

The parallel file systems that have been described in the last chapter already show

high parallel i/o performance when running on multiple i/o servers [44, 45]. However,

there are several conditions under which these file systems are not that well-suited.

A common parallel file system needs to be set up and configured on specific i/o

nodes. This limits the usage of i/o nodes to exactly these preconfigured servers.

Furtehrmore, deploying a parallel file system over several clusters can become a

high administrative overhead, as this for example requires ”common user bases and

common security policies” [46]. This is still feasible in static grid setups, as demon-

strated in the deisa project [47] with gpfs. In reconfigurable grid environments

like given in the viola setup, however, not only clusters but also specific nodes of

clusters are coupled dynamically on a per-job basis. Only these nodes are avail-
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able for the application. This also requires dynamic distribution of server processes

onto these dynamically coupled nodes. Such a setup requires a parallel file system

that can be dynamically distributed among arbitrary cluster nodes. tunnelfs and

memfs provide such a dynamic parallel file system. This is probably the most im-

portant differentiating factor between this newly developed system architecture and

other parallel file systems. tunnelfs and memfs together are capable to create and

terminate a parallel file system on an arbitrary amount of arbitrarily distributed i/o

servers on a per-job-basis without prior setup.

The memory capacity of parallel systems is increasing rapidly [1, 48, 22] and reaches

storage sizes that were reserved to secondary storage devices in the past. The result

is that applications can keep more data in the fast main memory and avoid storage

on relatively slow disk-based devices. But as already described, the problem size

of typical parallel applications also increases, so secondary storage still remains

necessary for most applications.

Nonetheless, applications can benefit from increased memory capacity of remote

clusters. Some applications that frequently access large datasets are restricted to

problem sizes that fit into the primary storage (see section 4.1.1). Other applications

need to process data in real time, also requiring very low latency. These applica-

tions have very high i/o performance demands, so that access to secondary storage

is often inapplicable if no high-performance i/o solutions are available. In this case,

a parallel file system for main memory can help to increase the problem size. With

high-performance parallel i/o to remote main memory the i/o performance can be-

come sufficient to store frequently accessed data out-of-core. This means, not only

problems that fit into the local memory of the application can be processed, but

problems that fit into the aggregated local and remote main memory, increasing the

processable problem size.

The general usage scheme of a parallel memory file system is to store temporary

results, that are first written to storage and later read back. The constraint is that

a memory file system can only store write-read data. It can neither store write nor

read data, as defined below:

• Write data can be defined as result data, which should become persistently

available after application termination. An application-based memory file sys-

tem loses its data after job termination unless it is used as a caching system

for a persistent file system. Currently, memfs does not provide this feature,

but it is planned as an enhancement.

• Read data is input data, which is loaded into the application from persistent
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storage. Before writing data to it, a temporary memory file system does not

contain any data, so there is nothing that could be initially read from it.

• Write-read data is temporary data, that is first written by the application and

later read back. This is usually intermediary result data, that is too large to be

kept in local main memory. By introducing storage to remote main memory

with memfs, this data does not need to be written to persistent disk storage,

providing the high-performance of a memory-based parallel file system.

Write-read data only needs to be written to storage when the local main memory

capacity is exhausted. A memory file system like memfs therefore is usually uti-

lized to store data to remote servers. This means that in the most common cases

application clients and i/o servers are placed on different clusters. This allows the

application to use additional (remote) memory storage, without the requirement

of deploying application clients on these remote cluster nodes. Using a temporary

memory file system does not require any application changes, it just modifies the

i/o storage target transparently to the user.

Many applications process more i/o data than can be stored in the available remote

main memory, even when restricted to write-read data. Since a parallel file system

for main memory provides relatively small storage capacity that can be accessed

in high-performance, these applications can utilize it to store the most frequently

accessed data to optimize the overall i/o time. By storing only the most commonly

used files up to the overall memory capacity, the usage of the limited available remote

memory is optimized. In this case, the parallel memory file system operates as an

extended cache, that stores the most frequently accessed file data.

High availability of the file data and fault tolerance within the file system are not as

important in temporary memory file systems as in persistent disk-based file systems.

This results from the fact that file data is only available during job runtime anyway.

If one of the nodes fails, jobs usually need to be restarted in a parallel system and the

write-read operations are repeated. One approach to avoid a complete restart after

system failure is to use checkpointing, but this is nontrivial in a parallel memory file

system and is not a topic of this thesis.

Combining these factors, the main target of a remote parallel memory file system

is to remotely store relatively small amounts of frequently accessed write-read data

in dynamic grid environments. We discuss the special needs of parallel scientific

applications where memfs could be employed in section 4.
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3.3 Architecture of MEMFS

This section gives an insight into the design of memfs and its usage together with

tunnelfs [43]. memfs is started on some or all of the tunnelfs i/o servers of

an application. It does not require any administrative setup on the utilized nodes.

tunnelfs provides i/o server nodes that are spawned in the user-space as extra pro-

cesses by mp-mpich [41, 42]. These extra processes are hidden from the application.

memfs can therefore be dynamically started on an arbitrary number of nodes in the

grid [49].

memfs maintains a parallel file system for main memory on these nodes. The design

of memfs can be divided in three parts:

1. The adio device,

2. the file storage, and

3. the multiserver environment.

These three parts are illustrated in figure 3.1, where the main thread and the service

thread both belong to the multiserver environment. This is a simplified class dia-

gram without any attributes and with only few of the i/o functions. The remaining

functions are excluded for the sake of clarity. memfs does not support the standard

posix-interface, because this interface is not designed for parallel i/o. For that rea-

son, memfs can only be used via the mpi-io interface. We now present the three

memfs parts in more detail.

3.3.1 MEMFS ADIO Device

The memfs adio devices receives i/o function calls from the tunnelfs server pro-

cess, which originally received this request from a client process. The memfs adio

device translates mpi-io accesses into memfs-specific accesses and passes the pa-

rameters of the i/o operations to the locally running memfs server main thread.

After the main thread finishes the handling of the i/o operation it returns the re-

sults to the adio device, which then also returns the results to the tunnelfs server

(see figure 3.2). A complete list of all memfs adio device functions can be found

in appendix A.1.
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Main Thread

+thread_comm_io(function:int,fd:ADIO_File,buffer:void*)

+MEMFS_Init(num_servers:int)

+memfs_main_loop()

Memfs File Storage

+memfs_open(name:char*,accessmode:int,blocksize:int64_t,position:int)

+memfs_write(fh:int,filepointer:ADIO_Offset,buf:void*,size:int)

+memfs_read(fh:int,filepointer:ADIO_Offset,buf:void*,count:int)

+memfs_delete(filename:char*)

Memfs ADIO Device

+ADIOI_MEMFS_Open(fd:ADIO_File)

+ADIOI_MEMFS_WriteContig(fd:ADIO_File,buf:void*,datatype:MPI_Datatype,offset:ADIO_Offset)

+ADIOI_MEMFS_ReadContig(fd:ADIO_File,buf:void*,datatype:MPI_Datatype,offset:ADIO_Offset)

+ADIOI_MEMFS_Delete(filename:char*)

Service Thread

+memfs_service(args:void*)

1

1

1

1

1

1

Figure 3.1: Class diagram of the MEMFS file system

3.3.2 File Storage in MEMFS

The file storage of memfs is designed to efficiently store file data in the main memory

of i/o server nodes. This layer of memfs does not take charge of distributing file

data among multiple servers, it stores all files sequentially in the main memory

of the local server. The file storage consists of a filetable to administer the data

and the i/o data itself. The filetable stores all metadata belonging to a file, such

as the filename and the access mode. All metadata is distributed among the i/o

server processes by creating the file on each server with the same parameters. The

storage capacity of this local file storage is limited by the available main memory.

In memfs, the i/o data is managed in blocks that are allocated and deallocated

dynamically. The i/o block size can be set for each file by passing a parameter to the

file system. If this parameter is not passed, a standard i/o block size is chosen. The

file storage subsystem provides all necessary functions to execute mpi-io operations,

e.g. opening, closing, deleting, reading, writing and resizing a file.

3.3.3 Multiserver Environment

The memfs server nodes together form a parallel file system for main memory

by communicating with each other. All communication in memfs (and also all
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Figure 3.2: Interaction of I/O Clients, TUNNELFS Servers and MEMFS Servers

communication in tunnelfs) is done with mpi operations. This helps to abstract

from the underlying network device.

The multiserver part of memfs is responsible for the distribution of file data between

servers. Currently, data in memfs is distributed by simple striping among all servers,

which is one of the optimization approaches this thesis analyzes (see section 7).

The multiple memfs i/o servers are able to handle client requests concurrently,

as necessary in a parallel file system (see section 2). Each server can handle the

requests of any client. If a request accesses i/o data that is stored on other servers,

these server communicates with each other and exchange the requested data. The

communication of the different memfs servers is handled by two threads that are

started on each server: the main and the service thread (figure 3.2). The main

thread receives and handles all original requests from the adio device issued by an

i/o client. It directly reads / writes data from / to the local file storage. If the i/o

operation requires i/o data from one or more other servers, the main thread contacts

the service thread of this / these server(s). The service thread of each server is

responsible for the handling of requests from remote main threads. When the main

thread received the results of all outstanding requests, it returns the combined result

to the adio device, where it is returned to the calling tunnelfs operation. This

finishes the i/o operation in memfs.
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3.3.4 The Locking Mechanism

memfs implements a central lock server to guarantee sequential consistency as in-

troduced in section 2.1.4. The locking mechanism distinguishes between write and

read requests. Multiple read requests to overlapping file regions can be performed

concurrently, since no data is changed. When a write operation is active, however,

no other write or read operations are allowed to concurrently access this file region.

The locking server queues these requests until the write operation is finished. Upon

finishing of a write operation, all queued requests are evaluated again to test if

they can be performed or if further queuing is required due to other active write

operations.

The locking mechanism of memfs is only required for applications with multiple

clients that access overlapping file regions and if at least one of these requests is

a write operation. The general access scheme of mpi applications, however, is of-

ten restricted to nonoverlapping file regions. Sequential consistency only guarantees

that write requests are either completely visible or completely invisible, but it does

not define any order on all requests, i.e. it does not define if a read returns the data

before or after the changes of a concurrent write operation. This is too relaxed for

many applications, which is the reason that accesses to overlapping file regions are

often already negotiated at application level. Since the locking mechanism intro-

duces additional overhead, applications that do not require sequential consistency

guaranteed by the file system should disable it.

3.3.5 Optimized access patterns for MEMFS

memfs is currently optimized for large, contiguous accesses. Noncontiguous accesses

are currently completely handled by romio, which performs data sieving. The

current implementation of memfs delivers high performance for optimized access

patterns, but this performance collapses with noncontiguous accesses.

To optimize the performance of the parallel memory file system memfs we identified

two essential parts: The client-server mapping and the file data distribution between

servers. The client-server mapping defines the coupling of i/o clients and i/o servers.

Optimized solutions for both parts are required to minimize communication between

memfs servers and provide optimized, parallel access to an application.

The following chapters analyze, compare and evaluate optimizations for parallel file

systems to provide high performance also for non-optimal access patterns.



Chapter 4

Access Patterns of Scientific

Applications

To optimize a parallel file system, knowledge about the applications accessing it is

required. Applications in general have very different i/o access schemes, so exam-

ining a wide variety of applications would yield multiple different access schemes.

However, specific access types are very common for a wide range of applications.

This chapter analyzes multiple scientific application with respect to these common

access types. Several authors have already examined the i/o access patterns of sci-

entific applications in the past, for example in [50, 51].

The charisma project of N. Nieuwejaar et al. described in [50] has analyzed the

usage of ”multiprocessor file systems” in parallel applications used in real produc-

tion environments. Unfortunately this project was finished in 1996, so these results

are older than one decade now. Typical scientific applications changed since then,

especially in terms of the amount of data processed, but some of the charisma

results are still very interesting. The project was started to ”CHARacterize i/o in

Scientific Multiprocessor Applications from a variety of production parallel com-

puting platforms and sites” [50]. The work includes characterization studies on two

systems: An Intel iPSC/860 [52] with the ”Concurrent File System” and a Thinking

Machines CM-5 [53] with the ”Scalable File System”. Both file systems are out of

date and not used by todays clusters.

The i/o analysis of F. Wang et al. from 2004, described in [51], traces the system

i/o activities of three parallel scientific applications: two physics simulations, one

running on 343 nodes and one running on 1620 nodes and the i/o Stress Benchmark

ior2 [54]. The underlying file system used by the authors is a development version

of Lustre Lite [30, 31]. The trace data was collected on a ASCI Linux Cluster of
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the Lawrence Livermore National Laboratory, which is a 960 dual-processor cluster

connected through a Quadrics Switch. This more up-to-date analysis can probably

better clarify the i/o needs of todays’ applications. The restriction to three applica-

tions, however, can not deliver results for parallel applications in general, but it can

give some interesting insight into special parallel scientific i/o requirements.

Both works describe the i/o behavior of parallel applications with focus on the

amount of files, the file sizes and the access schemes. We now outline the most

interesting results for the optimization of a parallel file system.

4.1 Load Analysis

4.1.1 Out-of-core Applications

In charisma, most of the examined applications opened only a few files during

their execution - more than 75% opened less than 8 files - but a few applications

opened many files (the maximum was 2217 opened files for one application). The

authors conclude that although many applications only open a few files, ”file system

designers must optimize access to several files within the same job” [50].

Another result is that less than 5% of all files opened were ”temporary”, here defined

as a file deleted by the same job that created it. Only few of the analyzed applications

use files as an extension of memory for out-of-core solutions. The authors conclude

that most ”programmers have found that out-of-core methods are in general too

slow” [50] due to the limited i/o performance.

In [51], no analysis of the number of files used by each applications is done. The

authors only discuss that during their traces the file servers stored about 300.000

files altogether. From these files, 6.6% had a lifetime shorter than one day, which

can be compared to ”temporary” files. These files make up 7.3% of the stored data

amount.

In a parallel memory file system all files are temporary, except this memory file sys-

tems supports storage at another persistent storage device. Files are only available

during runtime to store intermediary results that do not fit into the main memory of

the compute nodes. Only these relatively few files (5% and 6.6% respectively) can

be opened with memfs, but if applications take advantage of the increased i/o per-

formance, this number can increase. This can also help to increase the applications’

problem size by providing high-performance access to out-of-core data.
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4.1.2 File and Request Sizes

The results regarding file sizes or i/o request sizes described in charisma are not

discussed in detail, because these values are probably obsolete due to their age. It

also not possible to just multiply the results by a constant factor because it is uncer-

tain if file and request sizes of scientific applications were increasing proportionally

since these results were taken. Anyhow, some basic facts of the charisma results

are described. An interesting point is that small request sizes (up to 1000 byte) were

very common but still most of the data was transferred in a few large requests. The

conclusion of the authors is that the analyzed applications require low latency for

small requests as well as high bandwidth for large requests.

In the more current results of [51], the benchmark ior2 has one unique request size

of around 64 kilobytes. In one of the physics simulations almost all write requests

are smaller than 16 bytes while still most of the data is transferred in requests larger

than one megabyte. In this application there occur nearly no read operations. The

other physics simulation uses two major write sizes: 64 kilobytes and 1.75 megabytes.

The read requests mostly have sizes less than 1 kilobytes, while still a few larger

requests of 8 kilobytes make up 30% of all transferred data.

Taken these results together it becomes apparent that parallel scientific applications

often use a large amount of small requests, while still most of the data is transferred

in relatively large requests. This again shows the requirement of both low latency for

small requests and high bandwidth for large requests. A high-performance parallel

file system should be optimized for both of these two requirements.

4.2 Data Access Schemes

A large number of applications like video and audio streaming, copying of data

files and archiving access a file sequentially from the beginning to the end. This is

optimal for most underlying file systems, because ”many systems can identify this

pattern and optimize for it” [4], for example by reading complete disk blocks at once.

However, parallel scientific applications often show other forms of access patterns.

The charisma authors examined the access schemes of the running applications.

They define a sequential request ”to be one that begins at a higher offset than

the point where the previous request from that compute node ended” [50]. The

analyzed applications show that nearly 100% of the write-only files were accessed

sequentially. This is because most of the analyzed applications wrote to separate
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files for each node. With a separate file there usually is no need for a node to write

a file in non-sequential order. Likewise most but a significantly lower percentage of

the read-only files were accessed sequentially, because most read-files were shared

among the nodes. Several of the applications that read files in a non-sequential

order, read the data in reverse order, beginning at the end of the file, an access

scheme called reverse sequential. Most of the read-write files were accessed non-

sequentially. The authors give no specific explanation for that, but one can reason

that the non-sequential skips occur especially when changing from a write to a read

and otherwise.

Another important analysis of the charisma project is the regularity of access

patterns. Therefore, the authors analyzed the interval between requests, which is

the ”number of bytes between the end of one request and the beginning of the

next” [50]. One third of the files was accessed in a single read or write request per

node, so there was no interval at all. The remaining accesses show a high regularity.

Only less than 10% of all files were accessed with more than two different intervals.

The request sizes (the amount of requested data) show a high regularity, too. Less

than 20% of all files were accessed with more than three different request sizes. The

interval and the requests sizes together show that many applications used ”regular,

structured access patterns” [50]. The authors conclude that this is probably because

much of the data was stored regulary in matrix form.

When analyzing the nonconsecutive access patterns, the authors found that many

of the files were accessed entirely with a strided pattern. A series of requests is

simple-strided if each request accesses the same amount of data and the interval

is always the same between requests. A strided segment is a number of requests

that are part of a simple-strided pattern. Then a nested strided access pattern

is ”composed of strided segments separated by regular strides in the file”. This

nested strided pattern occurs when multidimensional matrices are distributed among

multiple processors. See figure 4.1 for an illustration of such a distribution, where a

threedimensional matrix (a) is distributed among four processes. The strided access

to the corresponding file is shown in (b). These nested strided patterns occur very

often in scientific applications, because a lot of scientific data is stored in matrix

form and the matrices are distributed among multiple processes. The authors of [4]

call this ”in some sense worst-case scenarios for parallel i/o systems”, as these strides

result in many small-sized requests that only read small parts of each disk block.

This indicates that applications ”can benefit from the descriptive capabilities avail-

able in high-level interfaces” [4] as described in chapter 2. Programmers for example

can use mpi derived datatypes to describe nested strided accesses in memory or in
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(a) 3-Dimensional dataset access

Innermost strided pattern

Second strided pattern

Outermost strided pattern

(b) Corresponding nested strided patterns

Figure 4.1: Nested-Strided Example. Source: Based on [4]

files (see 2.1.2). The frequency of these strided access patterns also show that the

layers below the high-level interfaces should support operating in terms of structured

data [4]. This means that noncontiguous file accesses should be natively supported

by the underlying parallel file systems.

The authors of [51] also utilize a strided version of the ior2-benchmark [54]. This

version strides the ”blocks from different nodes into the shared file” [51]. In this

strided version, the write performance of 512 nodes drops down to 2 gigabytes

per second, compared to 9 gigabytes per second in the contiguous version of the

benchmark. The read performance even drops down from about 4 gigabytes per

second to 100 megabytes per second. [51] The development version of Lustre Lite

used in this project does not natively support strided access patterns which results

in this drastical performance decrease.

From this results we can conclude that a parallel file system which natively sup-

ports and is optimized for nested strided access patterns can greatly improve the

performance of many parallel scientific applications. A file system that stores file

data according to the distribution of data between application clients can access the

storage devices in contiguous large chunks.

4.3 Implications for the Design of a Parallel File

System

The two access pattern characterizations described in this chapter have shown some

requirements for a parallel file system that can help to improve the i/o performance

of typical parallel scientific applications. We will keep these in mind when discussing

potential optimizations for parallel file systems. We identified three important re-

quirements, that a file system should support to achieve optimized results:
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1. A file system needs to deliver high performance for a large amount of files,

2. it should provide low latency for small request sizes as well as high bandwidth

for large request sizes and

3. it should be optimized for nested-strided access patterns



Chapter 5

I/O Performance Optimization

The main goal of this thesis is to optimize a parallel memory file system for common

parallel scientific applications. The total i/o time t of an application should be

optimized. This is the total amount of time that all i/o operations of an application

take. In a parallel file system there are two main factors that influence the total i/o

time: the network transfer of data and the processing of data on servers, including

the access of the i/o devices. This chapter defines a general mathematical cost

model that helps to evaluate the optimization strategies introduced in the upcoming

chapters. This simplified cost model only defines the costs for single clients, not

for the total amount of application clients. This is a simplification of the real i/o

time, because clients operate in parallel and concurrently, so the total costs of an

application can neither be computed by just adding up all client costs nor by taking

the maximum of the client costs. This simplification is necessary to keep the cost

model at an expedient complexity.

The model constrains to setups where an application runs on two coupled clusters.

Let this be cluster Cl1 and cluster Cl2. In the cost computations for a parallel

memory file system it is furthermore assumed that all i/o clients are deployed at

Cl1 and all i/o servers at Cl2 (see section 3.2 for an explanation why i/o servers

and clients usually are not placed on the same cluster). This setup is illustrated in

figure 5.1.

The nodes of each cluster are connected through an internal network interface. The

parameters of this network interface are: The latency of sending a message from one

node to another node of the same cluster: lCl1 and respectively lCl2 and the band-

width of the internal network connections between the nodes: bCl1 and bCl2. Then,

let there be a intercluster network device I connecting Cl1 and Cl2. This device is

described by a latency lI and a bandwidth bI . Furthermore each message traverses
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Figure 5.1: Setup for 2 Clusters: All Clients are placed on Cluster 1, all Servers on

Cluster 2

a number of hops. These hops are only modelled on the server cluster Cl2. On Cl1

the clients directly contact the i/o servers for each i/o request. There are situations

where data needs to be internally sent over multiple hops of the client network,

for example when only a subset of clients is connected to the intercluster network.

But these hops are hidden to the file system layer and can therefore be included in

the bandwidth and latency parameters of Cl1. The servers, however, may need to

actively communicate with other servers to exchange the requested data of the par-

allel file system. The potentially multiple hops at the server-cluster are defined as:

hCl2 . There are also no hops associated to the parallel file system on the interclus-

ter network. The file system layer directly exchanges data between i/o clients and

servers, not regarding any routers or other hops of the network in-between. There-

fore, the cost model does not include hops at the intercluster network. The routing

of messages over the intercluster network is completely determined by underlying

protocols. These costs are contained in the bandwidth and latency parameters of

the intercluster network.

Then, the transferred i/o data itself is influencing t: Let there be an ordered set of

messages

Mj = (mj1, mj2, . . . , mjn)

for client j. The number of messages sent and received by client j is

nj = |Mj|

and let the amount of data transferred per message mji ∈ Mj be dji.

The data needs to be processed on each hop. It is assumed that the processing time

of a message is identical on each hop, which again is a simplification. Furthermore
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it is assumed that the processing time is somehow related to the size of the message,

so the processing time pt is defined as a function c of dji and a constant factor tc,

which is the time that a hop needs to process a message, regardless of the size:

pt = c(dji) + tc. (5.1)

The transfer time of a message mji between two nodes of cluster Cl2 can now be

defined as:

aCl2 = hCl2 · (lCl2 + (dji/bCl2) + pt) (5.2)

The transfer time of the intercluster network can be defined in the same way, except

that no hops are modelled:

aI = lI + (di/bI). (5.3)

The i/o time tji for each message mji ∈M is:

tji = aI + aCl2. (5.4)

Requests exceeding the maximum network message length, require are split of the

i/o data into multiple messages. tunnelfs, for example, currently uses a maximum

message length of 4 MB, i/o data requests exceeding this value have to be split up,

generating multiple i/o data messages.

This cost model is used to analyze the mpi-io operations of scientific applications,

that access parallel file systems. It concentrates on intelligent server architecture

file systems as this is the most common file system design, that is also used in the

parallel memory file system memfs. In these file systems an i/o operation can be

divided into several stages. The steps of a write operation are described now, as

illustrated in figure 5.2:

1. The client application on cluster Cl1 calls the mpi-io operation.

2. The file system specific adio device is called by mpi-io.

3. If necessary, this adio device splits the request into parts, either because of

message size limits, or to directly contact multiple servers (compare to the

mechanism of pvfs2 described in section 2.2.2), or both.

4. The adio device initiates a write operation with one or more i/o servers run-

ning on Cl2 (one or more network messages).
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Figure 5.2: Different steps when an I/O function is called

5. It then sends the individual data parts to this server / these servers (one or

more network messages).

6. Each contacted server receives these parts.

7. If required, the server forwards some or all of the parts to one ore more target

servers (zero or more network messages).

8. The target servers receive and write the parts into the target file system.

9. The target servers and the originally accessed server exchange error codes (zero

or more network messages).

10. After writing all parts and exchanging all error codes with target servers, the

originally accessed server sends an error code to the adio device (one network

message).

11. The adio device analyzes this error code and returns it to the mpi-io appli-

cation.

Taken together, one i/o request results in multiple messages exchanged between

clients and servers, at least three messages for each i/o request, potentially more.

A read operation performs similar, except that the i/o blocks are sent from the

servers to the client. In this case, the client initiates the data transfer by a small

request message sent to one or multiple servers.

All exchanged messages can be modeled with the cost model described above. The

total time for a specific i/o request is then the sum of the time taken for all these

messages.

The total i/o time for a client j can be computed as:

tj =

nj∑

i=1

tji (5.5)
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This is a very simplified model because it does not regard potential network opti-

mizations like pipelining messages or conflicts like collision of messages. This model

can be used to analyze and improve the i/o time for specific clients. However, the

target of a parallel file system is to optimize the total i/o time of applications and

not the i/o time of single clients. Therefore, the cost model can help to optimize a

parallel file system, but it can not be used as a simple formula, which just needs to

be solved optimally. The following optimization approaches will be evaluated with

the support of this model, but will not solely rely on it.





Chapter 6

Optimization Schemes for

Client-Server Mapping

The first optimization technique for parallel file systems analyzed in this thesis is

the mapping of clients to servers. A mapping is an assignment such that a client

contacts one specific server for all mpi-io requests until the mapping is changed.

Formally a mapping can be described as: Let there be a set of clients

C = {c1, c2, . . . , ck}.

Let there also be a set of servers

S = {s1, s2, . . . , sl}.

Then a mapping is a total function

f : C → S, (6.1)

defining one server for every client.

An important factor for optimizing the client-server mapping of an application is the

data matching of client requests. It can be defined as the percentage of requested

data located at the contacted server: Let a request R be described by an offset given

in bytes off , a file view view (see section 2.1.2 for a definition) and an amount of

data to be read or written rs:

R = (off, view, rs).

A function

g : R× S → R (6.2)
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with

g(r, si) = x, 0 ≤ x ≤ 1, r ∈ R, si ∈ S, x ∈ R (6.3)

computes the matching for a given request r and a server si. What g computes is

the percentage of data requested in r that lies on server si. When file data is not

replicated among multiple servers the sum of all server matchings is always 1:

∑
g(r, si) = 1, i = 1, . . . , l. (6.4)

If not otherwise stated we assume that file data is not replicated. A matching

(r, si), r ∈ R, si ∈ S

is optimal if there is no other matching (r, sj), sj ∈M with

g(r, sj) > g(r, si),

i.e. si is the server that stores most of the data requested in r. Let opt represent

this optimal server si, so g(r, opt) = x is the optimal data matching for request r.

The more data a client directly reads from or writes to the assigned server, the less

data has to be transferred between different i/o servers. The maximum reachable

data matching for a request is the maximum percentage of requested data that lies

on any one of the servers. If a client accesses in a request r a total of n bytes and

n/2 bytes of that request are located at server s1 ∈ S, again n/2 bytes are located

at server s2 ∈ S, then the maximum reachable data matching is 50%, assigning the

client to either one of the servers s1 and s2. In this case, g is:

g(r, s1) = g(r, s2) = 0.5.

There is no unique optimal server for r, so in this case opt is defined as the set

containing both s1 and s2 : opt = {s1, s2}.

The only possibility to increase this value is by dividing the original request into

requests for specific servers: Assume that r′ contains all data located at server s1,

while r′′ contains all data located at server s2: r′ + r′′ = r. Then

g(r′, s1) = g(r′′, s2) = 1.

In this way, a data matching of 100% can be achieved, as no intraserver communi-

cation is necessary to transfer the requested data from / to the client. Approaches

that split requests and directly access the right servers for each part of the request

will be described in section 6.2.1 and 6.2.2.
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6.1 Current State in MEMFS

6.1.1 Client-Server Mapping Interface

As described in chapter 3, memfs does not directly communicate with i/o clients. All

client requests are handled by the tunnelfs client, which forwards these requests

to the i/o servers and then calls mpi-io operations itself. So memfs can not directly

change the mapping of clients to servers itself. It implements an interface that passes

changes to the client-server mapping through the tunnelfs server. tunnelfs

allows to change the mapping after each mpi-io operation that is called by a client.

The tunnelfs server can add a new mapping as a parameter of the reply to the

client. The client automatically evaluates all reply parameters and – if given – sets

a new client-server mapping.

When using memfs as the target file system, the tunnelfs servers call a memfs-

specific function, which computes a mapping with the client-server mapping algo-

rithm implemented in memfs. Currently, this is a simple round-robin mapping

algorithm, which is introduced in the next section, but it can be exchanged with

more sophisticated algorithms, which are presented later in this chapter. Currently,

the function which computes a mapping is called at the end of each open, read, write

and file view modification operation. But if required, the interface can be changed

to call this function at the end of any mpi-io operation. Mappings can only be

changed at the end of an operation, because only then the new mapping can be

returned as a parameter to the tunnelfs i/o client. Advanced mapping algorithms

that require changes in the mapping during an i/o operation (for different blocks of a

write request for example) would require changes to the general parameter exchange

procedure of this interface.

6.1.2 Round-Robin Mapping

Currently memfs uses a static client to server mapping. It uses a n-to-1 client

to server assignment, which means that each client contacts exactly one server and

receives all results from this server, while a single server can be contacted by multiple

clients. In the current implementation, each client gets assigned one server in a

round-robin fashion, which results in an even distribution of clients to servers for all

files together. The mapping for a file starts, where the last mapping ended. This

guarantees that the algorithm reaches a nearly even distribution of clients to servers.

See figure 6.1 for an example where three clients are assigned to two servers. The
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Figure 6.1: Round-Robin Client-Server Mapping for multiple Files

mapping of file 1 assigns two clients to server 1, the mapping of file 2 assigns two

clients to server 2. So in total, each server gets assigned the same number of clients.

In a round-robin mapping the mapping function f is defined as:

f(cj) = si, i = (1 + x+ j) mod |S|, si ∈ S, cj ∈ C, (6.5)

where x is the server number at which the last mapping ended. The constant value

of 1 is added to this server number to start at the directly succeeding server of the

last mapping. Servers are numbered in terms of their rank in the internal server

mpi communicator. A round-robin assignment allows to parallelize requests coming

from clients, as different clients contact different servers concurrently. This is one

of the requirements of a parallel file system (compare to section 2).

In a globalmaster assignment in contrast, all clients are assigned to exactly one

server, so parallelization of accesses is not possible. In this case, f is defined as:

f(cj) = s, cj ∈ C, s ∈ S, j = 1, . . . , |C|. (6.6)

This globalmaster mapping corresponds to a distributed file system like nfs, that

supports sharing of files between multiple clients, but no parallelism in client re-

quests.

A problem arises, when clients access data of other servers than the one they are

assigned to. In this case, the server has to communicate with one or more other

servers to read or write the requested data, increasing the number of hops of the

server cluster by one. This obviously results in increased network traffic, slowing

down the client request. The difference can be shown with the cost model developed

in section 5: When a client directly contacts the server that holds the requested data,

this server does not have to further communicate with other servers to read / write
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the data. The number of hops at the server cluster Cl2 is then 1, which can be

inserted into equation 5.2:

aCl2 = 1 · (lCl2 + (dji/bCl2) + pt). (6.7)

If the data matching is below 1, parts of the accessed data need to be transferred

between servers. If the roundrobin mapping assigns the optimal server opt to a client

for a request r, giving the data matching g(r, opt) = x, then 1 − x percent of the

accessed bytes need to be transferred from a second server, increasing the number

of hops on Cl2 to 2. The overall transfer time on Cl2 is then:

aCl2 = x · (lCl2 + (dji/bCl2) + pt) + (1− x) · 2 · (lCl2 + (dji/bCl2) + pt). (6.8)

This equation includes bot the latency and the bandwidth parameters of the network

of cluster Cl2 as well as the message size dji and a computation setup time pt.

Altogether, the additional overhead is not a constant factor, it increases with larger

message sizes, i.e. with larger i/o requests. The i/o time required at the client

cluster Cl1 and the intercluster network I remains the same, since the additional

overhead occurs only at Cl2. Additionally to this increased i/o message exchange,

two servers are required to fulfill a request. Those two servers are blocked during

the computation and delay concurrent requests of other clients. In the optimal case,

where data is not transferred between servers, only one server is blocked.

So for each message that needs to be transferred to another server than the origi-

nally contacted one, the i/o time increases. As the client-server mapping in memfs

currently is solely determined by a round-robin assignment, the data matching of

client requests can reach an arbitrary small value, up to zero, when only data of

other servers than the assigned one is accessed. This shows that optimization of the

memfs client-server mapping is necessary to improve i/o performance.

6.2 Potential Optimization Strategies for Client-

Server Mapping

This section discusses the client-server mapping approaches of the parallel file sys-

tems introduced in section 2.2. Following this, other potential improvements to the

mapping of clients to servers are presented, in particular an approach that predicts

data accesses before they are actually performed and another approach that utilizes

hints passed to the file system to describe upcoming data requests.
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6.2.1 Request-Based Client-Server Mapping

In most intelligent-server parallel file systems (see section 2.2.2) each client has the

information about which server(s) to contact for a request and directly communicates

with that server(s). We call this request-based client-server mapping because the

appropriate servers are determined for each single client request and no permanent

assignments exist. The client splits all requests into parts for specific servers and

transfers each part directly to or from the server that stores this part of the file.

This means that the original i/o request can result in multiple requests of the client

to different servers.

pvfs2 is a file system that utilizes this technique. Data in pvfs2 is stored at

designated i/o servers, the so called pvfs2-servers (see [28]). pvfs2 does not map

clients to specific servers, the clients contact servers based on particular requests.

Each client contacts any one of the pvfs2-servers at startup. This servers replies with

configuration information about the file system, including the partitioning of the

handle space into ranges for specific i/o servers [28]. Using this handle partitioning

a client can compute the responsible server for a given filename. When first accessing

a file the client contacts this server and receives a file data distribution function.

With this distribution function the client can compute the parts of the file that each

server holds.

Each i/o data request can then directly be sent to the server that holds the requested

data or is designated to store the current data by evaluating the distribution func-

tion. This distribution function can not be changed during runtime, so the cached

version of the client does not need to be updated.

Lustre [30] uses a request-based server access, too. The concept is similar to the

pvfs2 approach, so the single steps are not described again.

There is a clear advantage of a request-based client-server mapping compared to

static mappings where clients contact one specific server until the mapping is ex-

plicitly changed. In the request-based approach the clients read and write data

directly at the servers that hold the data. Requests of data distributed among mul-

tiple servers are split into several client requests, one for each server involved. This

means that no server-to-server exchange of i/o data is necessary, because all data

is directly transferred from the client to the designated server. This reduces the

number of hops on server side to 1. Given the cost model introduced in section 5

this means that hCl2 = 1, so all factors that include the number of hops are excluded
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Figure 6.2: Comparison of requests split at client side or at server side

from formula 5.2, resulting in:

aCl2 = lCl2 + dji/bCl2 + pt. (6.9)

This term equals the optimal case in the round-robin mapping as defined in equa-

tion 6.7. With this approach the data matching defined in section 6 for a request r

and given servers S is at its’ maximum because all requested data is located at the

contacted server: Let there be a set

req = {r1, r2, . . . , rn}

with
n⋃

i=1

ri = r.

Then the data matching function for each element of this set returns 1:

g(ri, sj) = 1, ri ∈ req, sj ∈ S, i = 1, . . . , n.

The splitting of r into req and the corresponding mapping of each ri to a server sj

is done by the algorithm that splits one request into multiple requests for specific

servers, for example by using the distribution function in pvfs2.

To achieve sequential consistency between requests of different clients the servers

still need to communicate, but they do not need to exchange the usually much

larger i/o data. The problem of guaranteeing sequential consistency in a parallel file

system is introduced in section 3.3.4.

One drawback of the request-based client-server mapping is that when requests are

split into subrequests for specific servers, potentially many small requests are sent

out by an i/o client. This means that the number of messages traversing the network
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Figure 6.3: Request split and combined at client side

between clients and servers can significantly increase. Since clients and servers in

most cases are located on different clusters this means that more messages are sent

through the intercluster network interconnect. Inserted into our cost model this

yields that the usually high intercluster network latency lI can become a critical

part for the overall i/o performance. See figure 6.2 for a comparison between a

request split on client side (a) and a request split on server side (b). This figure

disregards that also in case 6.2(b) potentially multiple messages are transferred

over the intercluster network interconnect. That happens when the request size

exceeds the maximum network message size (see section 5). Anyhow the relatively

large maximum network message size prevents this message split from becoming a

bottleneck since a request is only split into few, still comparably large messages.

But in the case of requests explicitely split at client side, the number of messages

can substantially increase, especially when clients use small chunk sizes as necessary

for applications with multidimensional data partitioning and nested-strided accesses

(see section 4.2). A way to avoid this split into multiple messages is to distribute

file data accordingly to the data access schemes of the i/o clients. This approach is

described in section 7.2.2.

The scenario displayed in 6.2(a) can be improved by merging all requests for specific

servers into one request again on client side (see figure 6.3). This merge of requests

requires that new datatypes are automatically computed for each involved server to

transfer the potentially complex i/o data scheme in a single i/o operation, i.e. the

file view needs to be split into separate file views for each i/o server.

6.2.2 Direct Block Access

Clients of applications that use shared storage file systems (section 2.2.1) either

directly access blocks of storage devices or forward requests to remote servers that
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then perform blockwise access to attached storage. A gpfs client knows which

storage device to use for writing and reading data by information contained in the

metadata distributed over the file system [27]. So there is no mapping of a client

to a fileserver, but the data is directly accessed. This concept is very similar to the

request-based mapping, because requests are split into parts for specific servers on

client-side. The difference is that shared storage file systems access data blockwise

and intelligent servers file systems use file descriptors (section 2.2). The direct block

access always transfers complete file blocks [8], resulting in increased network traffic

especially for strided patterns that only access small parts of blocks.

6.2.3 Predicting Accesses

Many processors [55, 56], hard disks and operating systems are loading data into a

cache before it is actually accessed. This is a technique known as prefetching [57,

58, 59] or prepaging [60].

The client-server mapping tries to optimize the mapping of clients to access the

servers that hold the requested data. For basic clients that do not know which

server to access for each request, the servers have to determine a mapping. One

way of optimizing this mapping is to predict future client access parameters on the

server side. Prefetching also has to decide which file data to prefetch, comparable

to the prediction of parameters. Therefore, the techniques applied in prefetching

algorithms can be partially utilized to predict the next accesses.

As described in section 2.2.1, gpfs is a file system that uses prefetching to read

data into the buffer pool before it is actually accessed. It recognizes sequential and

different strided access patterns [24]. Since many parallel applications show a high

regularity in the access of files (see section 4.2) and use recurring stride sizes it is

a promising approach to utilize an algorithm that automatically recognizes several

sequential and strided access patterns. It can be used to predict recurring accesses

with a constant stride factor as in figure 6.4 for example. When the last n (a

reasonable value for n has to be found) accesses all use a constant stride it is likely

that request number n+ 1 also uses this stride size. The algorithm can then predict

this stride for the next access. This approach has the advantage that no changes to

the application are required, the prediction is automatically done based on recent

accesses. For applications with recurring access patterns this can be very effective,

it becomes difficult or impossible the less regular the applications’ data access is.

Furthermore n already completed i/o operations are required to predict the next
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Figure 6.4: Simple strided access pattern for 3 clients. Offsets of clients increase at

30 MB per request.

access, so the first n accesses can not take advantage of the prediction algorithm.

An option is to store the access patterns of previous runs in a configuration file

for every application. If an application runs many times and every client always

works on approximately the same data, this information can be used to predict

accesses. Then also the first n accesses can be predicted because information from

the previous runs is available. This approach becomes difficult when the number

of clients changes between each application run, because then the accessed data for

each client usually changes, too.

The prediction of upcoming i/o requests also needs to take knowledge about access

patterns into account. The file views that are usually set for each application process

define the accessible file regions of each client and can therefore be seen as hints to

the file system (see section 2.1.2). The parallel file system needs to filter out all

data regions that can not be accessed by a client and restrict the prediction to the

accessible regions. After the file view is initially set for each client the algorithm

assigns the server that holds the first data entries of the individual file view. The

algorithm stores information about previous request sizes and access patterns and

uses these information to predict the next access. After a file view is changed, the

prediction has to be reevaluated. The algorithm assigns the server that holds most of

the data that is predicted to be accessed in the upcoming i/o request for that client.

This is a speculative approach, where upcoming requests are predicted based on data

gathered at previous requests. If the data access patterns of an application are very

irregular, this approach can not help to improve the i/o performance. The prediction

of accesses tries to optimize the client-server mapping to reach the optimum data
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matching for each access. As introduced in section 6, multiple servers can hold parts

of the accessed data. Since this approach does not split requests at client side, data

needs to be transferred between servers for all accesses with a data matching lower

than 1. As discussed in section 6, the server-to-server transfer increases the number

of hops, resulting in increased i/o transfer costs as introduced in equation 6.8.

6.2.4 Mapping based on Hints

gpfs supports a way to prefetch data of other access patterns than the ones natively

supported by passing these custom patterns to gpfs as hints via an interface [24].

gpfs then prefetches data for upcoming requests according to these passed hints.

This enables gpfs to prefetch data of applications with irregular access patterns,

that can not be automatically detected. It requires that the programmer has knowl-

edge of the applications’ access patterns and implements the hint passing.

Another work on prefetching data by passing hints to the file system is described

in [59]. The authors describe a parallel i/o system where multiple parallel hard disks

share a common buffer used for caching and prefetching of data. There, upcoming

data requests are passed to an algorithm, which then computes an optimized alloca-

tion of the shared buffer. This algorithms in detail can not be used to optimize the

client-server mapping of a parallel file system, because it optimizes the usage of a

shared buffer in terms of minimizing parallel i/o requests to disk and not the assign-

ment of clients to servers. But the general approach to pass some (or potentially all)

of the upcoming data requests out of the application to an algorithm which com-

putes optimal parameters for an underlying system is also interesting for a parallel

file system. Using this information about upcoming requests, the file system can

compute an optimized client-server mapping.

The hints that should be passed to the file system are:

• Upcoming request offset

• Upcoming request size

Besides these hints, the file system also needs to consider the file view set for each

client, as described in the previous section. Accesses of clients are always relative

to the file view and therefore the hints must be combined with the information

contained in the file view. Based on the given hints and the file views, the algorithm

can now compute, which i/o server stores most of the data of the next client request,

i.e. maximize the data matching of the next request. The client-server mapping can
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then be updated according to this information. This procedure needs to be executed

before each i/o request, requiring an additional mpi-io operation called by the client,

the MPI File set info operation which passes hints to the file system. The two hints

described above need to be passed to the file system using this function. The new

mapping will then be returned to the clients as a parameter of the server-response to

this mpi-io operation. The increased work required on the application source code

is the main drawback of the hint-based mapping. The developer needs to compute

the parameters of each upcoming i/o request and pass them to the file system. So

each i/o request requires one additional server-client communication (the exchange

of the MPI Info object).

Hint-based mapping as well as mappings that predict accesses do not split requests

like the request-based client-server mapping. Therefore, these techniques always try

to assign the server that holds most – but not neccessarily all – data of the upcoming

request. Both algorithms can not always reach a data matching of g(r, opt) = 1

for a given request r, resulting in the same additional costs for i/o data transfers

between servers introduced in equation 6.8. The difference between the hint-based

mapping and the prediction mapping is the approach to reach the maximum data

matching. Both try to assign server opt to the client, the prediction-based algorithm

by predicting upcoming client requests, the hint-based algorithm by actively passing

upcoming request parameters to the servers.

Passing hints to the file system is not speculative in contrast to the predictive ap-

proach presented in section 6.2.3, as no accesses are predicted, but the information

is actively given by the application.

6.3 Usable Strategies in a Parallel Memory File

System

This section discusses the usability of the introduced strategies in the parallel mem-

ory file system memfs.

The direct block access (section 6.2.2) as implemented by most shared storage paral-

lel file systems is not suitable for memfs. There, data is either directly accessed via

a san or through servers that provide blockwise access to locally attached storage.

memfs, however, is accessed by tunnelfs through an adio device, where data is

accessed on a file-basis. Furthermore, a memory file system does not store data on

a san.
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The request-based client-server mapping (section 6.2.1) of most intelligent server

parallel file systems like pvfs2 or Lustre would also require some basic changes

to the tunnelfs-memfs-cooperation. The currently used interface described in

section 6.1.1 allows to change a client-server mapping after specific mpi-io opera-

tions. In the request-based approach, however, the clients themselve have to decide

which server is contacted for a specific request or, more precisely, for a part of a

request. The mapping has to be actively set on the client-side. The client has to

separate a request into parts for specific servers and directly communicate with these

servers. memfs, however, is only active on the server side and relies on tunnelfs

to tunnel mpi-io requests to the i/o servers. Enabling the clients to contact the

right i/o servers for each request therefore requires to adjust the tunnelfs client-

server communication. This would soften the separation of the two adio devices

tunnelfs and memfs, complicating the independent development of both. Cur-

rently, tunnelfs provides a simple interface to memfs to change the client-server

mapping. This interface is well-defined and results in minimal dependency of both

devices. Introducing memfs-specific parts on the tunnelfs client side would mean

that changes on one of both devices would directly affect the other one, requiring

much higher coordination in the development of both. So in general, request-based

client-server mapping can be introduced into memfs, but the addressed impact on

the tunnelfs-memfs architecture has to be considered when choosing one of the

presented approaches.

The predictive client-server mapping (section 6.2.3) based on file views fits the ar-

chitecture of memfs and tunnelfs well. The two devices are developed for mpi-io

operations, where the usage of file views is very common. The file views set by

clients are already passed to each server by tunnelfs. This is especially helpful

when reassigning a client to a new server, because all servers (including the newly

assigned one) already have knowledge about the file view of that client and are auto-

matically updated when this file view changes. The consistency of these file views is

managed in the tunnelfs layer, so no additional overhead needs to be introduced

to distribute file views between servers. The analysis of the file views and the former

i/o requests can be done on the server side, since all required information is available

there. Then, the existing interface can be used to pass changes in the mapping to

the clients. This does not require any changes on the client (tunnelfs) side and

does not weaken the separation of tunnelfs and memfs. Furthermore, the client

application does not need to pass any additional information to the servers, because

the prediction is done based on previous i/o requests.

The same applies for the mapping of clients to servers based on information given by
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the application through passing hints (section 6.2.4). All hints set in the application

are already automatically passed by tunnelfs to the destination file system as

MPI Info objects. memfs can evaluate this information and assign a new server

based on it through the tunnelfs-memfs interface described in section 6.1.1.

Both the predictive and the hint-based technique are limiting the assignment of

new servers to clients by the number of read and write requests a client makes.

The design of tunnelfs requires to complete the active mpi-io operation before

a new assignment can be made. memfs can only change the client-server map-

ping through the provided interface once an i/o request is complete (compare to

section 6.1.1). This stands in contrast to the method of assigning a file view and

accessing all file data required by a client with a single mpi-io call, as recommended

in section 2.1.3. Applications using this technique can not take advantage of a client-

server mapping implementation that uses the existing interface between tunnelfs

and memfs (predictive or hint-based client-server mapping). So these two client-

server mapping approaches can only optimize the i/o performance of applications

that perform multiple i/o requests comparable to the standard Unix-approach.

6.3.1 Choice of a client-server mapping approach

Optimizing the i/o performance of a parallel file system requires a sophisticated com-

bination of both client-server mapping and data distribution techniques. Therefore,

the next chapter describes optimizations for the distribution of data between i/o

servers. Only after that, combinations of both techniques will be compared and one

will be chosen for implementation in the parallel memory file system memfs. The

client-server mapping only describes the coupling of i/o clients and i/o servers. All

of the strategies presented in this chapter try to assign a client to the server that

holds most of the requested data. But without knowledge about how data is dis-

tributed between the servers, the client-server mapping potentially reach arbitrary

poor data matchings. Furthermore, higher data matching values can be reached by

explicitly storing data according to the access scheme of clients. This means only a

sophisticated combination of both client-server mapping and data distribution algo-

rithms can optimize the i/o performance of a parallel file system. Two potentially

good standalone solutions that are contrary to each other can not reach the target

performance.

The overall problem can be seen from two perspectives. On the one hand the

client should contact the server that holds most of its accessed data. This is done

in the client-server mapping. On the other hand the clients’ file data should be



6 Optimization Schemes for Client-Server Mapping 57

distributed to the server that the client accesses. The data distribution algorithms

try to optimize this part. These two perspectives do not stand in contrast to each

other, but they need to cooperate with each other. Therefore, the next chapter

presents data distribution algorithms and following this, combinations of both are

analyzed.





Chapter 7

Data Distribution Schemes

The second optimization approach of this thesis is the distribution of file data be-

tween i/o servers. This chapter first presents the current state in the parallel mem-

ory file system memfs and then introduces potential data distribution optimizations

that can help to improve the i/o performance of parallel applications.

Distribution of file data is the partitioning of a file F on a subset of the available i/o

servers S. The distribution function defines a partition element pi for each server

si ∈ S = {s1, s2, . . . , sl}, which means that server si stores all data defined in pi.

The first requirement for a partitioning pattern is that the partition elements of all

servers define the complete file F :

F =
l⋃

i=1

pi. (7.1)

This requirement guarantees that each byte of the file maps onto at least one par-

tition element (compare with [7]). The data distribution strategies presented in

this chapter use different partitioning patterns to distribute file data among some

or all of the i/o servers S. We only consider distribution strategies that use non-

replicated data, so the second requirement for a partitioning pattern is that the

partition elements describe non-overlapping file regions:

pi
⋂

pj = ∅, ∀i, j = 1, . . . , l, i 6= j (7.2)

This second requirement insures that each byte maps onto at most one partition

element. So together, both requirements define a mapping for each file byte onto

exactly one partition element, i.e. exactly one server [7]. The mapping defines a

bijective function between the file and the partition elements.

The most important part of a distribution algorithm is the utilized partitioning

pattern. The presented strategies of this chapter differ in the utilized partitioning
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pattern. Some distribution strategies also redistribute file data to react on changing

access patterns of clients.

The main goal of the data distribution is to optimize the applications’ i/o perfor-

mance. Therefore, it needs to

• balance load between servers,

• utilize the multiple paths between clients and servers that a parallel i/o system

provides,

• maximize the data matching of client requests and

• optimize for typical access patterns of parallel applications like nested strided

data access.

7.1 Current State in MEMFS: Striping

memfs currently uses a block-based distribution scheme to partition files between

servers. Files are stored in server blocks and these blocks are distributed among

the servers, always beginning at the server with the lowest rank in the server com-

municator. This mechanism is know as striping and is supported by most parallel

file systems, including pvfs, pvfs2, gpfs, Lustre and gfs. The size of the server

blocks is called the stripe size. Striping is the standard approach to utilize the mul-

tiple paths to storage devices in parallel file systems. It balances load between the

i/o servers and utilizes the multiple paths of a parallel i/o system by placing parts

of a file on each server. It does not maximize the data matching and is also not

optimized for typical parallel access patterns like nested-strided data partitioning.

In memfs, the stripe-size bs can be set by the application for each file by passing a

hint to the file system when creating the file. If it is not passed, a standard value

is chosen. This makes the computation of the servers holding some part of the file

easy for contiguous data requests. Given an offset off , the corresponding first data

block is computed with:

b1 =
off

bs
. (7.3)

Together with the total number of i/o servers |S| the server s ∈ S that holds the

data block b1 can be computed with

s = bb1c mod |S|. (7.4)
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With a request size rs the total number of accessed blocks is

nb = drs
bs
e+ b(rs mod bs) + (off mod bs)

bs
c. (7.5)

The first summand divides the request size by the blocksize and rounds the result

up to consider cases where either the first or the last block is accessed partly, i.e.

when the client request either starts or ends at an offset that is not a multiple of

the blocksize. The second summand is necessary to regard the special case where

both the first and the last block are accessed partly. In this case, one additional

block needs to be added to the overall sum, which is done by adding up the two

carries, dividing it by the block size and then rounding this result down. Altogether,

this request accesses nb blocks that are blockwise distributed among the i/o servers,

beginning at server s. The server originally contacted by the client can exchange

data with all servers that hold blocks of this request using the formulas introduced

above. This means the server that receives the original request can easily decide

which server(s) to contact to fulfill the client request.

There are several drawbacks to the current memfs approach. The first one results

from the distribution always beginning at the server with the lowest rank. This

means that the servers with the lower ranks potentially store more data than the

ones with the higher ranks and are therefore more frequently accessed by clients,

resulting in load imbalance. This effect is especially present when the chosen stripe

size is relatively large and the application opens multiple small files. The problem is

illustrated in figure 7.1, where the blocks of file 1 are distributed among all servers,

but dependent of the size the files 2 and 3 are only placed on a subset of all servers

always starting at server rank 0. There are several ways to improve this approach,

that are described in section 7.2.1.

The second drawback arises from the fact, that memfs currently always transfers

the whole data of an i/o request to or from one i/o server. Since striping distributes

file data among multiple servers, client requests can involve multiple servers. This

is especially true for large requests, that exceed the memfs stripe size bs. Data

then needs to be transferred between the servers, the data matching introduced in

section 6 is less than 1. For a request of size rs byte, at least

max(0, rs− d nb|S|e · bs) (7.6)

byte need to be transferred between the servers. The second subtrahend subtracts

the maximum amount of file data stored at a single server from the overall request

size, giving the minimum amount of client data that needs to be transferred to
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another destination server. This second drawback can be solved by using the request-

based client-server mapping presented in section 6.2.1.

7.1.1 Choice of an optimal stripe size

Many parallel file systems that stripe i/o data between servers allow the user to

set the stripe size according to the requirements of the application. pvfs2 uses

a standard stripe size of 64 Kbyte [36], while the standard value of gpfs is 256

Kbyte [24] and both allow the setting of custom values.

Given the stripe size bs, the i/o server storing the logical file data stream changes ev-

ery bs byte. Most i/o and network devices deliver best results for the transfer of large

blocks, because of relatively high latency, which in general counts for large stripe

sizes. However, large stripe sizes can also negatively influence the i/o performance.

Parallel file systems are utilized to balance i/o load between multiple servers and to

utilize the multiple available connections to these servers (see chapter 2). A large

stripe size prevents a balanced distribution of data to servers, so that file blocks are

potentially concentrated on a subset of the available i/o servers, a problem already

illustrated in figure 7.1. File data can only be evenly distributed to servers if the

file size is a multiple of the stripe size. The stripe size that delivers the best i/o

performance is directly related to the access scheme of an application, the general

implication is that large files and large request sizes argue for a large stripe size and

vice-versa.



7 Data Distribution Schemes 63

7.2 Potential Optimization Strategies

This section first describes a potential enhancement of the current block-based data

distribution of the parallel memory file system memfs. Following this, an approach

to distribute file data according to the access patterns of the applications’ clients is

introduced which is for example utilized in the parallel file system Clusterfile [18].

7.2.1 Intelligent Block-Based Distribution

As already described in the previous section, the striping currently used in the

parallel memory file system memfs especially suffers from load imbalance problems.

One way to avoid this is to improve it by several ”intelligent” parameters, that help

to optimize the distribution of file data between the i/o servers. The following three

striping parameters can be tweaked:

1. The beginning of a distribution: The distribution of file data does not always

have to start at the server with the lowest rank.

2. The participating servers in a distribution: Specific files could only be dis-

tributed to a subset of the available i/o servers.

3. The stripe size: The server block size could be adjusted according to the

requirements of a specific application.

We call this improvement of a block-based round-robin distribution an intelligent

block-based distribution. The three parameters identified above need to be set to

best fit the demands of each specific application. Therefore, the algorithm can take

several information into account:

• The overall file data stored at each i/o server: To balance load, servers should

store similar amounts of data.

• The available memory of each server: In heterogeneous environments some

servers can store more data than others.

• The load of each server: Highly loaded servers should be disburdened.

• The expected file size: The chosen blocksize should correspond to the expected

file size (see section 7.1.1).
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• The number of participating i/o clients: More clients also require more paths

to data for optimal i/o performance, so the number of participating servers

can be increased, while a file that is only acessed by a single client also only

needs to be stored on a single server.

• The access patterns of clients connected to each server (file views, request sizes,

strides between requests and other parameters): The placement of data on

the i/o servers needs to be coordinated with the mapping of clients to servers.

By intelligently setting the three parameters ”beginning of a distribution”,

”participating servers” and ”stripe size” according to expected or known client

access patterns, the data distribution can yield higher data matching.

Some of these information are available to the file system, like the server load pa-

rameters. Others are speculative or need to be given to the file system as hints. For

example the file system itself has usually no information about how much data will

be stored by the application in specific files, unless the application explicitly sets the

file size before writing the file data. If the application provides these missing infor-

mation as hints, the file system can adjust to them and optimize the parameters 1 -

3 to best fulfill the demands of the application. The application programmer has to

pass these hints, otherwise the distribution algorithm is restricted to the internally

available parameters.

The combination and evaluation of the given information should result in optimized

values for the three parameters of the intelligent distribution. Some information,

however, can potentially contradict each other. Consider for example an environ-

ment, where one server is highly loaded, but still has more available memory than

the other servers. The high load accounts to exclude this server from a distribu-

tion, while the available memory accounts the opposite. The algorithm anyhow has

to decide for one specific value for each parameter. The given information can be

prioritized and then combined to a determined value, e.g. include or exclude this

specific server from a distribution.

To give an example of potential improvements that these intelligent parameters

result in, one can think of a large file that will be accessed in large chunks by many

clients. This file can be distributed to all servers to reach the maximum available

parallelism. Furthermore, the block size can be adjusted to the chunk size of the

client requests, so that complete blocks are read and written in single requests and

no false sharing occurs. In another example, a medium-sized file that will only be

accessed by one single client can be distributed to just one server, potentially the

server with most memory available or the server with the lowest load. Furthermore,
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the client should be assigned to this server to reduce forwarding costs, requiring

a combination with a client-server mapping technique. There are several other

special situations that this intelligent block based distribution can handle better

than the simple striping. Some of them can only be identified if the application

provides special information as hints. But also without these hints, the file system

can optimize the distribution based on the available information.

We illustrate the potential optimizations in figure 7.2, a modification of the distri-

bution shown in figure 7.1. Now, the blocksize of file 2 was decreased to distribute

the file among all servers and file 3 was completely placed at server 5 (the server

that holds one block less of file 1 than all other servers). This is just an example

for the intelligent optimizations that the algorithm could make, it is not guaranteed

that these new distributions are optimal.

The described improvements only change the server at which the distribution starts,

the participating servers of a distribution and the used block size. Therefore, the

computations already described in section 7.1 can be reused with only slight modi-

fications. When exchanging the data of this request with other servers, the original

server needs to consider that potentially only a subset si ⊆ S of servers is included

in the storage of this file. Formula 7.3 is extended to include the file-specific block

size bsi for file i in the computation of the start block of a given request with offset

off :

b1 =
off

bsi
. (7.7)

Formula 7.4 now includes the start server si
start ∈ S of a distribution to determine

the start server of a request:

s = bb1c mod (|S|+ si
start

). (7.8)

Formula 7.5 is now also extended to include the file-specific block size bsi:

nb = d r
bsi
e+ b(r mod bsi) + (off mod bsi)

bsi
c. (7.9)

The three parameters bsi, s
istart and si have to be distributed among all i/o servers,

so that each server can compute the target servers for a given request. This is

necessary to guarantee that each server can handle requests of any client. These

parameters need to be kept consistent among all servers, otherwise i/o operations

can show undefined behavior.

This data distribution approach is static, just as the simple striping described in the

previous section. The three parameters have to be set before the first write or read
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operation occurs. This is necessary to avoid data redistribution and inconsistency

of the stored data with the newly set parameters. The setting of these parameters

is implementation-specific and can be either done centrally by one designated server

(for example the server with the lowest rank in the communicator) or by a distributed

algorithm involving all servers.

7.2.2 Partitioning based on Logical Distribution

This section presents a data distribution optimization that physically distributes

data according to the logical distribution between application clients. A compara-

ble approach of this optimization strategy is used in the parallel file system Clus-

terfile [18].

The approach distinguishes between logical and physical data distribution, where log-

ical describes the distribution of data between the application processes and physical

defines the distribution of a file on the server storage devices. The standard physical

distribution of parallel file systems is striping file data between multiple servers, as

introduced in the last two sections. It can result in poor performance, when an

application uses more complex logical distribution patterns that include strides in

accesses. According to [18], striping negatively affects the performance and scala-

bility in several ways:

• Striping can result in data fragmentation on the i/o servers and requires com-

plex index computations for each single i/o access, because mismatch of the
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accessed data and the distributed data requires complex mapping functions

between the logical and the physical distribution.

• Complex access schemes of applications (for example with multidimensional

array partitioning) result in the exchange of many small messages, because

small parts of data are required from multiple servers. Network devices, how-

ever, provide best performance at the transfer of large messages. This increases

the network and the server load.

• Contention of accesses at i/o servers can decrease the achievable parallelism

between servers. When data is not distributed according to the access schemes

of clients, the probability increases that multiple clients access a single server

concurrently.

• The mismatch between physical and logical data distribution means poor spa-

tial locality on the servers. The result is non-sequential access of data on the

i/o servers, whereas most i/o devices are optimized for sequential accesses.

• The mismatch also increases the probability of false sharing of file blocks be-

tween clients.

All these aspects show that striping is non-optimal for complex access schemes that

are very common in parallel scientific applications. Those applications can benefit

from flexible data distribution. Many scientific applications use multidimensional

matrix partitioning between processes, which results in nested strided access pat-

terns (see section 4.2). A sophisticated data distribution should be optimized for

this partitioning, but should also support other distribution patterns.

A file system which implements this data distribution algorithm requires knowledge

about the logical distribution of the file between the client processes. Usually, this

knowledge comes from the file views (section 2.1.2) that are set for each client

process. Using this information, the physical distribution can then be related to the

logical distribution.

The data distribution algorithm in Clusterfile completely separates the physical from

the logical distribution. The logical distribution can differ from the physical distribu-

tion to support overlapping file views. In this case, mapping functions are computed

between the physical and the logical distribution, which are used to transfer data

between files and buffers at read and write operations. This approach also provides

flexible adjustment to file view changes. If an application accesses a file with mul-

tiple file views, a physical distribution can be chosen that best fits the demands of
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the application without requiring data redistribution after each file view change. A

basic version of this data distribution strategy defines the physical distribution as

the identity of the logical distribution. The file data is then stored according to this

file view. In this simplified version, overlapping file views are not supported, be-

cause otherwise single logical elements would map onto multiple physical elements,

a violation of the requirements introduced in section 7.

A file system can implement its’ own partitioning system - as for example Clusterfile

with nested pitfalls [39, 18], or use mpi datatypes for partitioning file data. A

file system that uses custom datatypes needs to convert between mpi datatypes

and the custom datatypes when using mpi-io operations. This conversion creates

additional overhead. Clusterfile uses its’ own partitioning system anyhow, because

all mapping and redistribution algorithms are based on the nested pitfalls [18].

Clusterfile traverses the mpi datatype tree to map it onto a Clusterfile datatype [61].

According to [9], it is expected that file views will be immediately set after a file is

opened. An implemented version of this data distribution algorithm should ensure

that this behavior is efficient, but also provide the potential to redistribute file data

at later application stages, for example after an initial header is written to the file.

In the basic version of this distribution strategy, the file data is directly stored

equivalent to the client file views. The data of each client is stored in a subfile. If

the number of clients is a multiple of the number of servers, each server stores the

same amount of client subfiles. If this is not the case, the algorithm stripes the

remaining subfiles on disjunct server sets. Given |C| clients and |S| servers, b |C||S|c
subfiles can be stored on single servers. The remaining |C|mod|S| subfiles are striped

across disjunct sets of servers to balance the load and the storage amount of servers.

The clients whose file views are stored on single server are assigned to the particular

server, requiring a combination with the client-server mapping strategy. All accesses

of these clients have a data matching of 1 because the complete file region defined

in the view of the client is stored at the contacted server. The remaining clients

still reach high data matchings, because their potentially noncontiguous file views

are striped contiguously on multiple servers. Only these clients require client-server

mapping during the application runtime, since data is accessed from different servers.
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7.3 Usable Strategies in a Parallel Memory File

System

This section describes the usability of the presented data distribution algorithms in

the parallel memory file system memfs.

The intelligent block-based data distribution is an enhancement of the currently

used distribution algorithm. The intelligent parameters can be easily integrated

into the current system. Most of the currently used computations only require minor

changes. The client information required to set the parameters can also be easily

passed to memfs, using the mpi hint mechanism already supported by tunnelfs

and memfs.

The data distribution based on the logical distribution of file data requires more

changes to the existing memfs approach. Files have to be stored independently of

the sequential file stream. memfs can use virtual files that explicitly store the file

parts of one client. The whole file can then be rebuild as the union of all virtual

files. Furthermore, request parameters (offsets and request sizes) need to be set

according to the logical distribution of a file. Currently, these logical information are

mapped onto the sequential byte stream. This distribution approach also requires

coordination with the utilized client-server mapping algorithm, to set the file server

of a client to that server that is designated to store the clients data. The adjustments

do not change the overall design of memfs and only require modification of specific

parts of the data distribution parts of memfs.

Concluding this chapter, we see that both presented data distribution optimizations

can be utilized in the parallel memory file system memfs.





Chapter 8

Combination of Client-Server

Mapping and Data Distribution

Techniques

The last two chapters presented different approaches for the mapping of clients to

servers and for data distribution between servers. This chapter now discusses the

advantages and disadvantages of combinations of both subtopics. Based on this

evaluation, one combination will be chosen for implementation that best fits the de-

mands of the parallel memory file system memfs. The goal is to show performance

improvements made by client-server mapping and data distribution techniques com-

pared to the original unoptimized version of memfs.

In chapter 6, the following approaches M were presented for the mapping of clients

to servers:

• M1) Round-robin client-server mapping (section 6.1),

• M2) Direct data access (section 6.2.2),

• M3) Request-based access (section 6.2.1),

• M4) Prediction of accesses (section 6.2.3) and

• M5) Mapping based on hints (section 6.2.4).

Chapter 7 then introduced the following data distribution techniques D:

• D1) Block-based round-robin distribution (section 7.1),
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• D2) Intelligent block-based distribution (section 7.2.1) and

• D3) Distribution of data based on logical partitioning (section 7.2.2).

A sophisticated combination of solutions for both subproblems can optimize the

communication between clients and servers in i/o requests. First, it can help to

increase the data matching of client requests by storing data at designated servers

and assigning clients to these servers. Second, it can minimize reconfiguration of

client-server mappings by evaluating application access patterns and storing data

according to them.

The following discussion will only include reasonable combinations of elements in

M and D. The round-robin based client-server mapping approach described in M1

does not need to be considered any further, as this is a very limited technique that

is already implemented in the current version of the parallel memory file system

memfs.

This thesis focuses on parallel file systems that operate in the intelligent server ar-

chitecture, described in section 2.2.2. These intelligent server file systems operate in

a client-server architecture, where i/o requests are made on a file basis. Furthermore,

in these systems the clients are not connected to direct attached storage like san.

M2, in contrast, is an approach for shared storage architectures (section 2.2.1) with

block-based access to direct attached storage devices. Therefore, this technique will

also not be considered any further.

The technique D1 is a special case of D2, where all variable factors are set to constant

values: The start server of a distribution is always the server with the lowest rank

in the communicator, the file is always distributed among all servers and the server

block size is always set to either a standard value or – if provided – to a value given

by the application as a hint. Therefore, the basic approach with constant values

is not treated as a separate technique, instead it is considered as a special case of

approach D2.

8.1 Potential Combinations

Altogether there remain three approaches for the client-server mapping, namely M3,

M4 and M5 and two approaches for data distribution, D2 and D3. As all remaining

elements of M can be combined with all elements of D there exist six potential

combinations. These will now be analyzed according to several criteria:
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• The first criterion is the expected performance of the combined techniques. In

this thesis, the i/o performance of scientific applications should be optimized

which states the expected performance of a newly introduced strategy as the

most important factor. Evaluating the performance, however, is not easy.

Some techniques are expected to show enormous performance improvements

for specific application types, while not being usable in other application areas.

Therefore, this evaluation will concentrate on the access patterns of typical

parallel applications, as described in chapter 4.

• Second, the approaches will be compared with respect to implementation com-

plexity. This master thesis is limited in time, so the chosen techniques need

to be realizable in this time frame.

• Third, the usability in memfs is discussed. This criterion does not evaluate

the overall quality of the discussed approaches, but since one of the presented

combinations should be implemented in memfs, this is still an important factor

for further consideration of an approach in this thesis.

• Furthermore, other special aspects of each combination are discussed, that

have either positive or negative influence on the choice of a technique.

The six combinations are now first evaluated for themselves. These evaluations will

summarize the discussions of the previous two chapters. After this, the combina-

tions are briefly compared to each other and one is chosen for implementation in

memfs. The discussion will focus on the usability in an abstract standard parallel

file system, to compare the quality of the combinations in general. A restriction

is that all techniques are only evaluated in terms of usability in intelligent server

parallel file systems, which is done to focus the discussion on one special architec-

ture. This is especially required for comparability of the presented approaches, since

shared storage parallel file systems impose completely different requirements on the

integrated client-server mapping and data distribution approaches. Only after this,

the special suitability in the selected parallel file system memfs will be evaluated.

8.1.1 Request-Based Mapping and Intelligent Block-Based

Distribution (M3 and D2)

The request-based client-server mapping is expected to clearly improve the i/o per-

formance compared to the standard approach of round-robin client-server mapping.

Requests are split on client side and directly transferred to the target servers, so no
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overhead on server-side is created to exchange parts of a file stored at other servers.

Section 6.2.1 already mentioned that a potential performance bottleneck can arise,

when the split of the original client request generates numerous client-server data

transfers. This section also introduced a potential solution to this bottleneck by

merging all requests for a specific server. The intelligent block-based distribution

is not optimized for typical access patterns of parallel applications. It suffers from

the problems introduced in section 7.2.2. It is expected to show best performance

when accessing large contiguous blocks, because data is distributed between the i/o

servers in this manner. Accessing the data in that way optimally utilizes the i/o and

network devices, which are optimized for transfer of large contiguous blocks of data.

For applications that access data in large blocks, this combination of techniques

seems to be optimal in terms of performance, because only low overhead is gener-

ated and large messages can be exchanged between a client and its target servers.

However, more complex access patterns like the very common nested strided accesses

are generating a significantly larger overhead, because in the block-based distribu-

tion the physical distribution of file data is independent of the logical distribution.

The nested strided patterns access many, small parts of a file separated by holes

(the stride). The native approach accesses each small part individually, which can

easily become a bottleneck, because of high i/o and network latency. The usage

of data sieving generates large, contiguous requests again, but requires locking of

large file regions and can serialize client requests by that, which can also become a

bottleneck. Data sieving also transfers more data over the network than required

(compare to section 2.1.5).

As already mentioned, this technique does not match the design of memfs and

tunnelfs well, because requests are split on the client side, where memfs is not

present. This would require changes of tunnelfs, weakening the separation of the

two adio devices.

The computation of the servers that are accessed in a client request as described

in section 7.2.1 is more complicated than in the simple block-based distribution.

Therefore, either the variable parameters block-size, involved servers and start server

have to be stored at client side, further introducing memfs techniques on tunnelfs

side. Alternatively, this combination of techniques can chose to fallback to the non-

intelligent block-based distribution, which does not require these parameters.

The complexity of implementation is on an average level: It would require to imple-

ment the splitting of requests on client side. The servers are then either contacted

with potentially many small data fragments or these fragments are merged, which
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would require dynamic building of server-specific file views for each client. The latter

approach is clearly more complex.

The request-based client-server mapping is already introduced in many intelligent

server parallel file systems like pvfs2 [28] or Lustre [30, 31], but there it is not com-

bined with an intelligent block-based data distribution scheme. pvfs2 uses it’s own

distribution mechanism where data is either distributed by striping or based on infor-

mation given by the user as hints. This is not the same like intelligent distribution,

where some parameters are automatically determined by the file system. Therefore,

combining request-based mapping and intelligent block-based distribution would be

especially interesting in terms of comparing the performance to pvfs2.

8.1.2 Prediction of Accesses and Intelligent Block-Based

Distribution (M4 and D2)

One special aspect of this mapping approach is that it is speculative because ac-

cesses are predicted. This prediction can only be successful if data accesses are

somehow regular. But as already described, scientific applications show a very high

regularity in their accesses (section 4.2) and are therefore potentially well-suited

for combination with a prediction mechanism that analyzes previous accesses. More

generally, applications that use regular access patterns are well-suited for the access-

prediction algorithm. There, upcoming request parameters are based on previous

requests. Since many parallel scientific applications use very regular accesses this

technique is expected to show high success in predicting accesses. The prediction of

accesses is a promising approach for this kind of applications, especially when the

algorithm is optimized for the very frequent nested strided accesses. As mentioned

in section 4.2 less than 10% of all files analyzed in the charisma project were

accessed with more than two different intervals (strides) between requests. When

an application switches very irregulary between two or more strides the upcoming

requests can become unpredictable, but based on the observations regarding regular-

ity in parallel scientific applications it can be expected that these irregular switches

are very uncommon. The prediction of upcoming accesses based on recent accesses

and given file views should therefore show substantial performance improvements

for typical applications. In contrast to the request-based mapping, client requests

are completely transferred to / from one server, which requires server-to-server data

transfers for many requests. Therefore, the expected performance is lower than that

of the request-based mapping, while still accelerating i/o operations.
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The usability in memfs is given, as mentioned this approach can use the existing

interface between tunnelfs and memfs to set new client-server mappings. As

described, this interface only allows to pass new mappings when an i/o access is

complete. Therefore, applications that access complete files in a single i/o call can

not be accelerated with this approach. In contrast, the request-based mapping can

also accelerate single i/o calls because these are then directed to the right server(s).

The complexity of this implementation is lower than the previously described ap-

proach. The server has to analyze all client accesses and predict future accesses based

on these information and the given file views. All required information like block

sizes are already available on server side, so these do not need to be additionally

passed between clients and servers.

8.1.3 Mapping Based on Hints and Intelligent Block-Based

Distribution (M5 and D2)

The hint-based mapping can obviously only optimize the client-server mapping if the

hints are actually given by the application. When this is provided by the application

and all required hints are correctly passed, the file system can compute the right

server(s) for upcoming i/o requests and assign each server to the clients accessing it.

Since hint-based mapping is not speculative this will result in better performance

than the prediction of upcoming accesses, because no false-prediction is possible.

This technique also suffers from the requirement of i/o data transfer on server side,

as requests are always completely transferred to and from one specific server.

This combination can easily be utilized in memfs. Hints are already passed to

memfs by tunnelfs, not requiring any changes to this mechanism. Setting hints

is a standard construct of mpi for direct optimization of file system accesses. memfs

can analyze the information given as hints and use the existing mapping interface

to set new client-server mappings. The variable parameters of the intelligent block-

based distribution do not need to be transferred to the clients, since all mapping

and distribution decisions are made on server side.

The implementation complexity of this approach is very low. The implementation

of the hint-based mapping needs to interpret optimization hints that are passed to

memfs. Based on these information the algorithm has to update the client-server

mappings, regarding the parameters of the intelligent block-based distribution.

There is one big drawback of this approach. The hints have to be actively passed

to the file system by the application. It requires changes to the applications’ source
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code and introduces overhead. The parameters of each i/o request need to be passed

to the file system, before the request is actually performed, generating additional

client-server communication.

Hint passing can definitely be a reasonable approach for some applications, where

the source code is given and which are actively optimized for the target file system.

It is not possible to include these hints, when the source code of the application is

not available.

8.1.4 Request-Based Mapping and Distribution of Data

Based on Logical Partitioning (M3 and D3)

Combining these two techniques is not a promising approach, because they address

the same problem from two different directions. The request-based mapping assigns

clients to the servers that hold the requested data blocks, while the distribution based

on logical partitioning stores all data of a client on one specific server. For those

clients that store file data at only one server, the request-based mapping will always

assign the same server, not requiring any of the sophisticated techniques introduced

in this approach. Clients whose file data is distributed between multiple servers can

benefit from the request-based mapping, but the distribution information needs to

be present at the client (tunnelfs) side. Since this introduces even more memfs

parts on tunnelfs side than in the combination of M3 and D2, this approach does

not seem applicable in this special file system domain.

8.1.5 Prediction of Accesses and Distribution of Data Based

on Logical Partitioning (M4 and D3)

The main drawbacks of the previous combinations of client-server mapping algo-

rithms with intelligent block-based data distribution were that they either required

basic changes in the design of tunnelfs and memfs (the request-based mapping)

or had to transfer parts of the i/o data on the server side again, introducing addi-

tional hops (prediction of accesses and mapping based on hints). The combination

of a prediction of accesses for client-server mapping and data distribution based on

logical partitioning is able to resolve both of these drawbacks. Since the physical

distribution of file data on i/o servers is directly related to the logical distribution,

no transfer of file data between i/o servers is required for those clients that store the

complete file views on a single server. Furthermore, these clients only need to be
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mapped to one server for each specific i/o request, not requiring any changes to the

interface between tunnelfs and memfs. When client file data is completely stored

at one designated server, the mapping used here is not really a prediction of the

next access, instead a client is directly assigned to the designated server. The pre-

diction is only used for those clients, whose file data is distributed between multiple

servers. As described, this data distribution technique only distributes file data of

some clients, if the number of clients accessing a file is not a multiple of the number

of i/o servers. A remapping of a client to a server is only necessary when the logical

distribution of file data (the file views) change.

Still, there are some drawbacks to this approach. First, changing file views requires

complex movement of file data between i/o servers. An application is expected

to change its’ file view very rarely, which means that these additional costs incur

seldom. Second, the basic approach of distributing data according to the logical

partitioning is not able to deal with overlapping file views of clients. When the

physical partitioning of file data is the identity of the logical distribution, file views

are not allowed to overlap. Otherwise, multiple elements of the physical partition-

ing would map to one file byte, a contradiction to the requirement 7.2 introduced

in section 7. Section 7.2.2 also introduced the more general approach of a variable

physical distribution, which is for example used in the parallel file system Cluster-

file. There, the physical partitioning is not necessarily the identity of the logical

partitioning, so overlapping file views do not violate requirement 7.2. However,

this general approach is introducing a much higher complexity, requiring complex

mapping functions between physical and logical distributions.

Furthermore, this approach can only improve i/o performance, when data is actu-

ally partitioned between clients. If this is true and the file views are not frequently

changed, this combination is expected to reach very high i/o performance. If an

application does not partition file data between clients, it cannot take benefit from

the improvements introduced in this technique. In this case, the file system needs to

be able to fall back to another approach of distributing file data. As previously de-

scribed, the request-based mapping provides high i/o performance for standard con-

tiguous i/o requests. So when data is not partitioned between clients with complex

nested-strided patterns, using this request-based approach as an alternative seems

expedient. The previous section stated that a combination of those two techniques

does not seem reasonable, but the potential usage stated here is not a combination of

both but a composite approach of dealing with different application access patterns.

The two strategies will not be used simultaneously for a single file, but alternatively

according to the applications data access.
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8.1.6 Mapping Based on Hints and Distribution of Data

Based on Logical Partitioning (M5 and D3)

This combination also suffers from the problem that the special features of the client-

server mapping are not required with the data distribution based on the logical

partitioning of a file. The hint-based mapping gives information about upcoming

request to modify the client-server mapping appropriately. But the data distribution

algorithm used in this combination stores the file data of most clients on one server.

The accesses of these clients do not require the setting of hints about upcoming

offsets and request sizes. Again, the clients that stripe their views over multiple

servers can benefit from this mapping solution, but in general most hints will be

dispensable, generating unnecessary overhead.

8.2 Choice of a Combination

This section summarizes the results of the discussions on combinations of client-

server techniques with data distribution schemes. Based on this summary, the most

promising combined approach is chosen that is implemented for the parallel memory

file system memfs. The implementation should demonstrate that the theoretical

analyzes of the previous chapters can be proven by results collected in a real parallel

file system.

As mentioned in the previous sections, some combinations can already be excluded

from this summary. Namely, these were the combination of distribution of file data

based on the logical partitioning with either the request-based mapping or the hint-

based mapping. As these two combinations are excluded now, only four potential

combinations remain.

Table 8.1 summarizes the evaluation of the previous sections and shows the differ-

ences of the combinations in direct contrast, regarding the four criteria introduced

previously.

The combination M3 and D2 promises very good performance for large block re-

quests, but suffers from the mismatch of the logical and the physical distribution of

file data when using more complex access patterns. It furthermore has several draw-

backs. It does not fit the design of memfs and tunnelfs well and is comparatively

complex to implement. Furthermore, the basic approach of directly accessing the

target servers by splitting up requests is already extensively used and analyzed in

existing parallel file systems like pvfs2 and Lustre. The scientific innovation would
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be the combination with the intelligent block-based data distribution. It further

would be interesting to analyze its implementation in a parallel remote memory

file system to see if remote memory access can provide better results than a local

parallel file system.

Combining M4 and D2 will result in improved i/o performance, although it is ex-

pected to be lower than the performance of the previously mentioned combination.

Still, other aspects argue for choosing this prediction algorithm over the request-

splitting. It is well usable in the tunnelfs-memfs-architecture, since the existing

interface can be reused and all computations can take place on the server side,

where memfs is present. Furthermore, it is a completely new approach, not used

in any existing parallel file system to our knowledge. Therefore, comparing the

performance of this new technique to those of existing file systems would deliver

some interesting results. It could be a challenging and potentially successful task

to tune this algorithm in a remote memory file system to reach the performance of

existing parallel file systems with request-based client-server mapping. It could be

especially interesting to analyze the performance of different application types to

evaluate situations where this approach is or is not well suited.

The combination of M5 and D2 promises good i/o performance with a good usability

in memfs and comparatively low implementation complexity. Unfortunately, it

requires application changes (active passing of hints). Since memfs should be simply

integrated into existing mpi-io applications the hint-based approach is inapplicable

for the general case. It potentially can be used in the future to further improve the

client-server mapping for applications that provide these hints.

Combining M4 and D3 is expected to result in very good i/o performance for the

common nested-strided access patterns of parallel applications. For applications

that do not partition file data between clients, a fall-back to either a simple stan-

dard approach or to one of the other strategies described in this chapter is required.

As the combination of data distribution based on logical partitioning is expected to

reach the best i/o performance for typical parallel scientific applications, this solu-

tion is chosen to be implemented in memfs. As this thesis is limited in time and is

mainly interested in the potential reachable i/o performance improvements, we de-

cide to implement the direct mapping of logical distributions to physical partitions.

As described, this direct mapping uses the identity of the logical distribution as the

physical distribution and therefore does not support overlapping logical distribu-

tions. But as a positive effect it can dispense on using complex mapping functions

between logical and physical distributions. To become usable in a real production

parallel file system, it needs enhancements that support overlapping file views. The
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Name Performance Usability Complexity Specials

M3 +D2 very good poor medium like pvfs2

M4 +D2 good good medium Speculative

M5 +D2 good good low Requires appl. changes

M4 +D3 very good very good medium Only non-overlapping views

Table 8.1: Comparison of Presented Approaches

implementation of this technique is kept modular to support later add-on of this

functionality. For applications that do not partition file data we decide to reuse the

existing standard memfs approach, which already showed good i/o performance for

simple i/o patterns as published in [49].





Chapter 9

Implementation and Evaluation

9.1 Implementation Issues

This section discusses the required changes to memfs and tunnelfs to implement

the prediction-based client-server mapping and the data distribution based on the

logical distribution of file data. These changes are not described in detail as the

specific implementation adjustments are not relevant for the purpose of this thesis,

but special considerations regarding the overall design of a parallel file system are

explained.

9.1.1 Client-Server Mapping

To support dynamic mapping of clients to servers, a file system must distribute file

views of clients between servers. A client usually sets a file view at one specific

server. As long as the client only contacts this server for i/o requests relative to this

file view, this is not problematic. But as soon as the mapping assigns another server

to the client, the new server also requires the file view information. A file system

can choose to always distribute file views between all servers or to distribute file

views only on request. tunnelfs always distributes newly set file views between

all i/o servers. This mechanism is not cost-intensive since views can be represented

compactly. When a file view is set by a client, the receiving server needs to distribute

the following information to all other servers:

• file id: The unique identificator of the file for which the file view is set.

• client rank: The rank of the client in the global communicator to identify the

client associated with this file view.
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• displacement, etype and filetype: The three parameters that define the file

view, as described in section 2.1.2.

When combining a client-server mapping with the data distribution based on logical

distribution of file data, the mapping does not change for the clients that store file

data at only one server after it is initially set. Still, the file data of some clients is

distributed among multiple servers (compare to section 7.2.2). The data defined by

the views of all clients with ranks lower than b |C||S|c · |S| is distributed round-robin-

wise to one specific server, the file data of the remaining clients is striped across

all servers. The client-server mapping retrieves previously stored information about

the number of clients which opened a file to compute those clients that potentially

require mapping updates. These clients require a dynamic mapping to servers,

where distributed file views are required. After specific i/o operations (namely open,

set view, read and write operations) a memfs function is called, which updates the

client-server mappings. For those clients that store file data on a single server, the

mapping is retained unchanged, for the other clients the prediction-based algorithm

computes a new server. The updated mappings are then passed via tunnelfs to

the clients, which contact the newly assigned server in the next mpi-io operation.

9.1.2 Data Distribution

The distribution function of memfs was changed from the standard block based

striping to a distribution which is the identity of the file view of a client. In this

first implemented version the distribution stores all views of clients in separate

sequential subfiles. This means that a subfile stores all data defined in the view

of a client. These subfiles can either be completely stored at one server or striped

across multiple servers. They are stored on single servers when the number of

subfiles is a multiple of the number of servers, so that each server then stores the

same amount of subfiles. Otherwise some or all subfiles are striped across multiple

servers. memfs currently does not evaluate the amount of described data in each

view. Clients can define different amounts of data in file views, so that an even

distribution of clients to servers does not always balance the stored data amount.

In future versions, information retrieved from the file view description can be used

to balance the amount of data distributed to each server.

Each subfile is internally stored in a separate file in memfs. The filename is the

original filename with the client rank appended as a suffix. Since memfs files are

only accessed through the mpi-io interface, no problems with other interfaces that
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list directory contents can occur.

This simple memfs model does not support overlapping file views. The subfiles are

the identity of the file views and as defined in section 7 each file byte must map

onto exactly one partition element. To support overlapping file views, a different

layer that maps potentially overlapping file views to non-overlapping subfiles would

be necessary. In memfs, however, this simple distribution is utilized to evaluate

the achievable performance increase with physically distributed data according the

logical distribution.

Data redistribution is currently also not supported. A workaround is to manually

read all file data, open a new file with new file views and write all data again with

these new file views. A simple way to automatically support data redistribution

could be to do these steps internally in memfs, hidden to the user. A more sophis-

ticated data redistribution also requires mapping functions between separate data

distributions.

The memfs approach should be a simple approach to show potential improvements

when data is distributed according to file views.

Since only applications that partition file data among processes can utilize the new

distribution algorithm, this needs to be activated by a file hint. This hint can be

given for any file separately, so that applications that process multiple files can

store non-partitioned files with the former distribution algorithm and partitioned

files with the new distribution based on the logical partitioning.

9.2 Experimental Results

To evaluate the performance achieved by the new data distribution algorithm, two

different i/o benchmarks were performed.

The first benchmark performs different mpi-io operations to write and read contigu-

ous parts of files. In this benchmark, all processes access a shared file. The user can

pass the file size fs as a parameter to this benchmark, which allows measurements

with different amounts of data. The client process with rank ci ∈ C = {c1, c2, ..., ck}
then accesses the contiguous file region reaching from offset

fs

|C| · (i− 1)

to offset

(
fs

|C| · i)− 1.
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Each process writes its amount of data in this region, then reads the data back

and verifies the correctness of the read buffer. The results of this benchmark are

presented in section 9.2.1 with a comparison to the same benchmark ran with pvfs2.

The second application is a development of the Indiana University, which uses

mpi-io operations to distribute a matrix between multiple processes [62]. Minor

changes were made to this application to benchmark the performance of the mpi-io

calls. The application defines a 3-dimensional matrix which is distributed blockwise

among the participating processes. The blockwise matrix distribution is defined as

a mpi datatype (see section 2.1.1) with the MPI Type create darray constructor.

See the mpi standard [63] for the parameters of this constructor. This newly de-

fined datatype is then used as the fileview for the mpi-io data transfer. Similar

to the first benchmark, each application process writes its data amount, reads it

back and verifies it for correctness. The results of this benchmark are discussed in

section 9.2.2.

All measurements were performed five times to exclude negative influence of other

running processes, high network load, etc. The results presented in the next two

sections always illustrate the best performance of these five runs.

Both benchmarks were performed on the wr cluster, a 6-node cluster, where each

compute node is equipped with 4 AMD Opteron 846 64-bit processors at 2 GHz, 8

GB PC3200 main memory and one 36 GB SCSI disk with 10.000 rpm. The compute

nodes internally communicate over a Myrinet PCI-X Host Interface M3F-PCIXD-2.

For a more detailed description of the cluster hardware setup see [64]. The runs that

included a second cluster were additionally started on the PCC cluster, a 32-node

cluster. Each of these compute nodes is equipped with 2 Intel Xeon processors at

2.66 GHz and 1 GB main memory. The internal communication is performed over 1

Gbit/s Fast Ethernet. The two clusters are physically separated with a distance of

around 20 kilometers and are connected through the viola network [40], which pro-

vides dedicated 10 GBit/s optical wan connections. Each of the 6 wr cluster nodes

and the 32 PCC cluster nodes is equipped with one Fast Ethernet network adapter

of 1 Gbit/s connected to the viola network, resulting in a maximum transfer rate

between the two clusters of 6 Gbit/s.

9.2.1 Contiguous Data Transfers

This benchmark compares the performance of the data distribution based on logical

distribution implemented in memfs to results collected with pvfs2. The benchmark
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Figure 9.1: Contiguous benchmark including pvfs2 and memfs measurements

performs non-overlapping, contiguous data accesses and is therefore usable in the

newly implemented data distribution approach, although it cannot leverage the real

advantage of this distribution. Data is not accessed in strided patterns, which

means that the file views already define contiguous parts of the file. The main

advantage of a data distribution based on logical partitioning is that it performs

better than standard striping with strided access patterns (compare to section 7.2.2).

Anyhow, this benchmark should show that this approach can also be used effectively

for contiguous non-overlapping i/o requests. Two different setups where chosen to

compare the performance to the results of an existing, widely used parallel file

system, pvfs2 in this case. The measurements were taken with varying file sizes

from 600 MB to 2.4 GB as illustrated in figure 9.1.

The first setup measures the performance of pvfs2 by placing one pvfs2 server

on each of the 6 wr cluster nodes. This was empirically found to deliver the best

results, placing more than one pvfs2 server delivered worse performance, probably

because of the single shared disk at each cluster node. The read and write operations

perform very similar in pvfs2, both reach a maximum value of about 400 MB/s

(see pvfs results of figure 9.1). Each of the SCSI disks can perform at a maximum

transfer rate of about 70 MB/s, so pvfs2 is able to approximately reach the overall

maximum of 6 · 70 MB/s = 420 MB/s. The file system overhead is compensated

by the caching of file data.

The second setup measures memfs with the data distribution based on the logical

distribution, in this case a contiguous, non-overlapping distribution. In this setup

the wr cluster was coupled with the PCC cluster to demonstrate the usage of remote

main memory. As only 12 nodes of the PCC cluster were available for reservation

and the other nodes running a long-term production job, 12 servers were placed on

the wr cluster and 12 clients processes on the PCC cluster. In memfs, multiple

servers started on each cluster node can provide higher performance than single

servers started on each node. In the ccnuma architecture of the wr cluster, the
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different processors of each node can access the main memory concurrently, without

the serialization that occurs when accessing a shared disk. In this setup, memfs

is able to reach more than 600 MB/s read performance to remote main memory

(see memfs read in figure 9.1). The write performance is below this value, at a

level comparable to pvfs2 of about 400 MB/s. We assume that this lower write

performance compared to the read performance partially results from the required

allocation of memory in the write case. In [49] we already demonstrated that memfs

is able to nearly saturate the available 6 GigE connections of the wr cluster with

mpi-io read operations and a total of 18 servers. Taken togehter, these results show

that a parallel file system for main memory that stores data on a remote cluster over

a high-performance network can exceed the results of a standard disk-based parallel

file system like pvfs2.

9.2.2 Strided Data Transfers

This benchmark demonstrates the improvements of the new distribution algorithm

when using strided data accesses. As mentioned in section 4.2 these strided accesses

are very common in parallel scientific applications and a parallel file system used in

these environments should optimize for them. The 3-dimensional distribution of the

3-dimensional matrix in this application results in complex, nested strided access

patterns (compare to figure 4.1). The file data distribution based on the logical

distribution stores each clients data according to this access scheme. Therefore, no

complicated mechanism like data sieving (see section 2.1.5) is required to write and

read the data efficiently. Unfortunately, no comparisons to pvfs2 were possible,

since the data verification part of this application always reported incorrect results

for pvfs2. We suspect that these incorrect results are related to the missing support

of sequential consistency in pvfs2 (see section 2.1.4), although the developers state

that pvfs2 guarantees atomicity of writes to non-overlapping noncontiguous regions

(compare to section 2.2.2). These problems need to be examined more thoroughly

in the future. Instead, we compared the results of the new data distribution with

the former memfs approach of striping as described in section 7.1. Figure 9.2 shows

the results for 6 servers placed at the wr cluster and 6 clients placed at the PCC

cluster. Figure 9.3 illustrates the same measurements taken with 12 servers on the

wr cluster and 12 clients on the PCC cluster, respectively. In both figures ”block”

denotes the results of the striping distribution (block-based) and ”view” denotes the

data distribution based on the logical distribution (with file views).

The application distributes a regular 3-dimensional matrix blockwise between mul-
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Figure 9.2: Strided benchmark for memfs with two different data distribution

schemes, 6 servers and 6 clients
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Figure 9.3: Strided benchmark for memfs with two different data distribution

schemes, 12 servers and 12 clients

tiple processes. We varied the size parameter of this application to measure the

performance of different file size. Since the application builds a 3-dimensional ma-

trix of integers and in our system integers are 4-byte datatypes, the resulting file

size is computed as size3 · 4.

The figures 9.2 and 9.3 show a very large gap between the block-distributed (striped)

results and the view-distributed results for all file sizes larger than 8 MB. The locking

mechanism of memfs described in section 3.3.4 had to be turned on for the block-

distributed version, because it uses the data sieving mechanism of romio (compare

to section 2.1.5). The locking mechanism serializes write accesses to overlapping

regions, resulting in very poor write performance. But also the read performance of

all block-distribution measurements lies below 100 MB/s. These results show the

problems of a mismatch between the logical and the physical file layout. With the

standard striping each client needs to access data parts from all servers.

In contrast, the view-distribution can reach very good results comparable to the

contiguous accesses of the benchmark introduced in the previous section. The best

transfer rates are achieved with 12 clients and servers as illustrated in figure 9.3.

With a file size of 4096 MB the read operations reach more than 600 MB/s, while
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the write operations still reach approximately 290 MB/s. We were unable to run

the block-distributed measurements with a file size of 4096 MB because of program

errors. We assume that these errors result from the numerous strided accesses

generated with this data distribution.
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Conclusion

This thesis presented optimization strategies for parallel file systems. It concentrated

on the mapping of clients to servers and the data distribution among the servers.

For both topics we presented a basic standard approach used in the parallel memory

file system memfs and potential optimized techniques. We further discussed com-

binations of client-server mapping and data distribution techniques and evaluated

those combinations against each other with special respect to implementation in

memfs. In this chapter we now summarize the work of this thesis. We outline the

most important results and mention potential advances of the development in the

future work section.

10.1 Summary

In this thesis we first introduced parallel i/o systems in general and parallel file

system in particular. Different file system architectures were presented with some of

todays most widely used parallel file systems. We also presented our previous work

on the parallel memory file system memfs, which works together with tunnelfs.

To further motivate the work on optimization techniques for parallel file systems we

presented results of access pattern analyses that stated concrete requirements for

parallel file system. We also introduced a simplified cost model for the i/o time of

applications, which can be used to compare different optimization strategies.

One of the two main parts of this thesis is the mapping of clients to servers. We pre-

sented the approach of memfs, a round-robin mapping of clients to servers, and the

technique of most existing parallel file systems: the direct access of requested data

at the designated servers. Two other techniques were also discussed, a prediction
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algorithm and a mapping based on application hints.

The second main part discussed in this thesis is the distribution of file data among i/o

servers. In this part we presented the standard approach of most parallel file systems

including memfs, the blockwise striping of file data among the server processes.

Since the basic version of this distribution had some fundamental drawbacks, this

chapter also presented an improved version of striping that utilized more information

to determine the distribution parameters. Still, we emphasized some major problems

of the general blockwise data distribution approach. It results in numerous small

i/o requests and network messages in the very common case of noncontiguous data

access. We introduced another data distribution approach that is based on a very

common technique, the setting of file views.

We analyzed all potential combinations of mapping and data distribution strategies.

For the special demands of the parallel memory file system memfs we chose the

prediction mapping approach and the data distribution that rebuilds the clients file

views. In the results chapter we showed that we are able to deliver high performance

with a parallel file system that stores data in the main memory of remote cluster

nodes. Our setup showed that access to remote main memory can achieve higher

transfer rates than a common disk-based parallel file system installed on a single

cluster, pvfs2 in this case. The newly introduced optimization strategies especially

showed significant performance increases with noncontiguous access patterns.

The main goal of this thesis was to show that the optimization strategies presented

throughout the thesis can help to improve the i/o performance of typical parallel

applications in a real parallel file system. We were able to show this performance

increase especially with strided data accesses that are very common in parallel ap-

plications.

10.2 Future Work

The data distribution algorithm implemented in memfs is a basic version of the

data distribution based on the logical partitioning of file data. Currently, it neither

supports overlapping file views nor changes to file views. To provide support for a

wide range of parallel applications in the future, this algorithm needs to be enhanced.

Introducing mappings between logical and physical distributions helps to support

both overlapping file views as well as file view changes. The mapping functions that

need to be used then introduce additional overhead. In the future, we will have

to show that the i/o performance of a distribution including these mappings still
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exceeds the standard striping performance.

Furterhmore, the extended data distribution and client-server mapping approaches

of memfs need to be compared to other file systems in more detail. Since Clusterfile

uses a very similar data distribution approach, it provides the potential to compare

the results of this data distribution strategy in a disk-based file system to a remote

memory file system. In these more elaborate comparisons more application types

can be evaluated.





Nomenclature

Terms

t Total i/o time

Cl = {Cl1, Cl2} Clusters 1 and 2

lCli ∈ R+, i = 1, 2 Network latency for cluster 1 and 2

bCli ∈ R+, i = 1, 2 Network bandwidth for cluster 1 and 2

hCli ∈ N, i = 1, 2 Number of hops at cluster 1 and 2

I Intercluster network

lI ∈ R+ Network latency of intercluster network

bI ∈ R+ Network bandwith of intercluster network

C = {c1, c2, . . . , ck} Set of Clients

S = {s1, s2, . . . , sl} Set of Servers

Mj = (mj1, mj2, . . . , mjnj) Ordered set of messages of client j

nj Number of messages of client j

aCli, i = 1, 2 Transfer time of cluster 1 and 2

aI Transfer time of intercluster network

tji i/o time of message mji ∈M
tj Total i/o time for client j

off ∈ N Offset

disp ∈ N Displacement

etype Elementary datatype

ftype Filetype

view = (disp, etype, ftype) File view

rs ∈ N Request size in byte

R = (off, view, rs) i/o read or write request

opt server that optimizes the data matching of a request

F File

bs block size (stripe size)
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pi Partition element of server i

b1 First data block of a request

nb Number of data blocks of a request

Functions

f : C → S Client-Server mapping function

g : R× S → R Data matching function

Operators and other symbols

mod Modulo operator
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Appendix A

Source Codes

A.1 List of MEMFS ADIO functions

Source: ad memfs.h

1

void ADIOI_MEMFS_Open(ADIO_File fd, int *error_code);

void ADIOI_MEMFS_Close(ADIO_File fd, int *error_code);

void ADIOI_MEMFS_ReadContig(ADIO_File fd, void *buf, int count,

MPI_Datatype datatype, int file_ptr_type,

ADIO_Offset offset, ADIO_Status *status,

int *error_code);

void ADIOI_MEMFS_WriteContig(ADIO_File fd, void *buf, int count,

MPI_Datatype datatype, int file_ptr_type,

10 ADIO_Offset offset, ADIO_Status *status,

int *error_code);

void ADIOI_MEMFS_IwriteContig(ADIO_File fd, void *buf, int count,

MPI_Datatype datatype, int file_ptr_type,

ADIO_Offset offset, ADIO_Request *request,

int *error_code);

void ADIOI_MEMFS_IreadContig(ADIO_File fd, void *buf, int count,

MPI_Datatype datatype, int file_ptr_type,

ADIO_Offset offset, ADIO_Request *request,

int *error_code);

20 int ADIOI_MEMFS_ReadDone(ADIO_Request *request, ADIO_Status *status,

int *error_code);

int ADIOI_MEMFS_WriteDone(ADIO_Request *request, ADIO_Status *status,

int *error_code);

void ADIOI_MEMFS_ReadComplete(ADIO_Request *request, ADIO_Status *status,

int *error_code);

void ADIOI_MEMFS_WriteComplete(ADIO_Request *request, ADIO_Status *status,
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int *error_code);

void ADIOI_MEMFS_Fcntl(ADIO_File fd, int flag, ADIO_Fcntl_t *fcntl_struct,

int *error_code);

30 void ADIOI_MEMFS_WriteStrided(ADIO_File fd, void *buf, int count,

MPI_Datatype datatype, int file_ptr_type,

ADIO_Offset offset, ADIO_Status *status,

int *error_code);

void ADIOI_MEMFS_ReadStrided(ADIO_File fd, void *buf, int count,

MPI_Datatype datatype, int file_ptr_type,

ADIO_Offset offset, ADIO_Status *status,

int *error_code);

void ADIOI_MEMFS_WriteStridedColl(ADIO_File fd, void *buf, int count,

MPI_Datatype datatype, int file_ptr_type,

40 ADIO_Offset offset, ADIO_Status *status,

int *error_code);

void ADIOI_MEMFS_ReadStridedColl(ADIO_File fd, void *buf, int count,

MPI_Datatype datatype, int file_ptr_type,

ADIO_Offset offset, ADIO_Status *status,

int *error_code);

void ADIOI_MEMFS_IreadStrided(ADIO_File fd, void *buf, int count,

MPI_Datatype datatype, int file_ptr_type,

ADIO_Offset offset, ADIO_Request *request,

int *error_code);

50 void ADIOI_MEMFS_IwriteStrided(ADIO_File fd, void *buf, int count,

MPI_Datatype datatype, int file_ptr_type,

ADIO_Offset offset, ADIO_Request *request,

int *error_code);

void ADIOI_MEMFS_Flush(ADIO_File fd, int *error_code);

void ADIOI_MEMFS_Resize(ADIO_File fd, ADIO_Offset size, int *error_code);

ADIO_Offset ADIOI_MEMFS_SeekIndividual(ADIO_File fd, ADIO_Offset offset,

int whence, int *error_code);

void ADIOI_MEMFS_SetInfo(ADIO_File fd, MPI_Info users_info, int *error_code);

void ADIOI_MEMFS_Get_shared_fp(ADIO_File fd, int size,

60 ADIO_Offset *shared_fp,

int *error_code);

void ADIOI_MEMFS_Set_shared_fp(ADIO_File fd, ADIO_Offset offset,

int *error_code);

void ADIOI_MEMFS_Delete(char *filename, int *error_code);

A.2 MPI File Struct

Source: adio.h and mpio.h
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1

typedef struct ADIOI_FileD {

int cookie; /* for error checking */

FDTYPE fd_sys; /* system file descriptor */

#ifdef XFS

int fd_direct; /* On XFS, this is used for direct I/O;

fd_sys is used for buffered I/O */

int direct_read; /* flag; 1 means use direct read */

int direct_write; /* flag; 1 means use direct write */

10 /* direct I/O attributes */

unsigned d_mem; /* data buffer memory alignment */

unsigned d_miniosz; /* min xfer size, xfer size multiple,

and file seek offset alignment */

unsigned d_maxiosz; /* max xfer size */

#endif

ADIO_Offset fp_ind; /* individual file pointer in MPI-IO (in bytes)*/

ADIO_Offset fp_sys_posn; /* current location of the system file-pointer

in bytes */

ADIOI_Fns *fns; /* struct of I/O functions to use */

20 MPI_Comm comm; /* communicator indicating who called open */

MPI_Comm agg_comm; /* deferred open: aggregators who called open */

int io_worker; /* bool: if one proc should do io, is it me? */

int is_open; /* deferred open: 0: not open yet 1: is open */

char *filename;

int file_system; /* type of file system */

int access_mode; /* Access mode (sequential, append, etc.) */

ADIO_Offset disp; /* reqd. for MPI-IO */

MPI_Datatype etype; /* reqd. for MPI-IO */

MPI_Datatype filetype; /* reqd. for MPI-IO */

30 int etype_size; /* in bytes */

ADIOI_Hints *hints; /* structure containing fs-indep. info values */

MPI_Info info;

/* The following support the split collective operations */

int split_coll_count; /* count of outstanding split coll. ops. */

MPI_Status split_status; /* status used for split collectives */

MPI_Datatype split_datatype; /* datatype used for split collectives */

/* The following support the shared file operations */

40 char *shared_fp_fname; /* name of file containing shared file pointer */

struct ADIOI_FileD *shared_fp_fd; /* file handle of file

containing shared fp */

int async_count; /* count of outstanding nonblocking operations */

int perm;

int atomicity; /* true=atomic, false=nonatomic */
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int iomode; /* reqd. to implement Intel PFS modes */

MPI_Errhandler err_handler;

void *fs_ptr; /* file-system specific information */

#ifdef ROMIO_TUNNELFS

50 int ind_info_change; /* independent info change, checked in ad_tunnelfs */

#endif

} ADIOI_FileD;

typedef struct ADIOI_FileD *ADIO_File;

typedef struct ADIOI_FileD *MPI_File;




